$\overbrace{}^{\circ}$ CAREER POWER

 AN IIT/IM ALபMNI C口MPANY

 AN IIT/IM ALபMNI C口MPANY
 RRB CLERK MAINS MEMORY BASED PAPER (QUANTITATIVE APTITUDE)SOLUTIONS

S1. Ans.(b)
Sol. Let initial quantity $=5 \mathrm{x}$

$$
\text { Milk } \quad \text { Water }
$$

4x $\quad \mathrm{x}$
$\frac{-3 x}{x} \quad \frac{-0.75 x}{0.25 x+10}$
$\frac{x}{(0.25 x+10)}=\frac{3}{2}$
$1.25 \mathrm{x}=30$
$\mathrm{x}=24 \mathrm{l}$
initial quantity of milk $=4 \mathrm{x}=96 \mathrm{l}$
S2. Ans.(b)
Sol. Ratio of profit $2: 3: 5 \times \frac{2}{3}: 7 \times \frac{2}{3}=6: 9: 10: 14$
Share of $B=\frac{18}{20} \times 12000=10800$ Rs
S3. Ans.(a)
Sol. Let initially length $=1$, Breadth $=b$
Area $=\mathrm{lb}$
New area $=1.5 \mathrm{l} \times 0.9 \mathrm{~b}=1.35 \mathrm{lb}$
$\%$ age increase $=35 \%$
S4. Ans.(b)
Sol. Let Principal = Rs 100
$=\frac{6000 \times \mathrm{x} \times 6}{100}-\frac{6000 \times(\mathrm{x}+2) \times 4}{100}=720$
$\mathrm{x}=10 \%$
S5. Ans.(b)
Sol. Total cost price $=(150 \times 250)+2500$
$=37500+2500$
$=40000$
Total selling price $=320 \times \frac{(100-5)}{100} \times 150=45600$
Profit percentage $=\frac{45600-40000}{40000} \times 100=14 \%$
S6. Ans.(e);
Sol. $A+B+C=84 \times 3=252$
$A+B+C+D=80 \times 4=320$
Age of $D=320-252=68$
Age of $\mathrm{E}=71$
$B+C+D+E=316$
$B+C=316-(68+71)$
$B+C=177$
Age of $A=252-177=75$ years
S7. Ans.(c)
Sol. C.P. to the retailer $=1955 \times \frac{100}{115}=1700$
But it is at a discount of 15%, M.P. $=1700 \times \frac{100}{85}=2000$
Total discount $=2000-1700=$ Rs. 300

S8. Ans.(b)
Sol. Initially low quality wheat $=10 \%$ of $150=15 \mathrm{~kg}$
High quality wheat $=150-15=135 \mathrm{~kg}$
15 kg of low quality wheat will be 5% of the final quantity of wheat
Final quantity of wheat $=\frac{100}{5} \times 15=300 \mathrm{~kg}$
Quantity of high quality wheat $=300-15=285 \mathrm{~kg}$
High quality wheat added $=285-135=150 \mathrm{~kg}$
S9. Ans.(e)
Sol. Required probability $=\left({ }^{6} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{3}\right) \div\left({ }^{12} \mathrm{C}_{3}\right)=\frac{6}{55}$
S10.Ans.(a)
Sol. per hour consumption of Ist candle $=\frac{1}{5}$
per hour consumption of IInd candle $=\frac{1}{4}$
Let after x hour their height is in ratio $=3: 2$
then, $\frac{1-\left(x \times \frac{1}{5}\right)}{1-\left(x \times \frac{1}{4}\right)}=\frac{3}{2}$
Solving the equation, $x=\frac{20}{7}$
S11.Ans.(c)
Sol. Required ratio $=\frac{760 \times \frac{8}{19}}{640 \times \frac{7}{16}}=8: 7$
S12. Ans.(a)
Sol. Total no. of females in company y $=450+360+280+280=1370$
S13. Ans.(c)
Sol. No. of males in Delhi and Chennai $=360+320=680$
No. of females in Chandigarh and Kolkata together $=210+280=490$
Required percentage $=\frac{680}{490} \times 100 \approx 139 \%$

S14. Ans.(b)
Sol. Required percentage $=\frac{1460}{2830} \times 100 \approx 52 \%$
S15. Ans.(d)
Sol. Except Kolkata, in all cities the no. of females in company Y are more than the no. of females in company X S16. Ans.(b)
Sol. Tax $=\frac{30}{100} \times 5$ crore
$=1.5$ crores
Penalty $=\frac{30}{100} \times 1.5$ crore
$=0.45$ crore
Total Tax $=1.5+0.45$
= 1.95 crore
\therefore Required money $=(5-1.95)=3.05$ crores.
S17. Ans.(b)
Sol. Money that he will get $\rightarrow 3,25,000-\frac{10}{100} \times 3,25,000-\frac{55}{100} \times\left(\frac{10}{100} \times 3,25,000\right)$
$=2,74,625$ Rs.
\therefore Required no. of day $=\frac{274625}{65000}$
$=4.225 \approx 5$ th day

S18. Ans.(e)
Sol. Required Ratio $=\frac{3,00,000}{60,000}$
$=\frac{30}{6}=5: 1$
S19. Ans.(a)
Sol. Tax $=\frac{30}{100} \times 20$ crore
$=6$ crore
Penalty $=\frac{55}{100} \times 6$ crore $=3.3$ crore
\therefore Total tax $\rightarrow 9.3$ crores
\therefore Required amount $=\frac{25}{100} \times 9.3$ crores
$=2.325$ crores
$=2,32,50,000$

S20. Ans.(d)
Sol. Required days $=\frac{5200000}{65000}-\frac{500000}{10000}=80-50=30$ days
S21. Ans.(c)
Sol. Share of $C=\frac{(15000 \times 16)}{(12000 \times 24)+(16000 \times 24)+(15000 \times 16)}=12000 \mathrm{Rs}$
S22. Ans.(b)
Sol. Let the price before increase $=x$
Then new price $=\left(\frac{100+20}{100}\right) \mathrm{x}=1.2 \mathrm{x}$
$\frac{115}{100} \times(x \times 24)=1.2 \mathrm{x} \times \mathrm{y}(\mathrm{y}=$ new consumption quantity $)$
$y=23 \mathrm{~kg}$
S23. Ans.(e)
Sol. Average speed $=\frac{\text { Total distance covered }}{\text { Total time taken }}=\frac{64}{11}=5 \frac{9}{11} \mathrm{~km} / \mathrm{h}$
S24. Ans.(a)
Sol. Let CP = Rs 1000
SP at 10% loss $=\frac{(100-90)}{100} \times 1000=900 \mathrm{Rs}$
But actual CP $=1000 \times \frac{(100-20)}{100}=800$ Rs
Profit percentage $=\frac{(900-800)}{800} \times 100=12.5 \%$
S25. Ans.(d)
Sol. Let pipe B be turned off after x minutes \therefore part filled by $(A+B)$ in x min. + part filled by A in $(20-x) \min .=1$
or, $\left(\frac{1}{30}+\frac{1}{45}\right) \times(20-x) \frac{1}{30}=1$
or, $\frac{5 \mathrm{x}}{90}-\frac{\mathrm{x}}{30}=\frac{10}{30}$
or, $x=15$ minutes.
S26. Ans.(a)
Sol. Let the duration be x hours.
ATQ, $\frac{600}{x}-\frac{600}{x+\frac{1}{2}}=200$
or, $\frac{600}{\mathrm{x}}-\frac{1200}{2 \mathrm{x}+1}=200 \approx 2 \mathrm{x}^{2}+\mathrm{x}-3=0$
It gives $x=1$ hour.

S27. Ans.(c)

Sol. Let the sum of their present ages $=x$ years.

Ater replacing, sum of their ages $=x-(4 \times 3)=x-12$ years
Thus, required difference in age of two members $=12$ years.
S28. Ans.(d)
Sol. Let the added money be x .
Then, $\frac{(830+\mathrm{x}) \times 14 \times 3}{100}-\frac{830 \times 12 \times 3}{100}=93.90$
or, $34860+42 \mathrm{x}-29880=9390$
or, $x=$ Rs. 105 .
S29. Ans.(c)
Sol. ATQ $456976=390625\left(1+\frac{4}{100}\right)^{n}$
or, $\left(1+\frac{4}{100}\right)^{n}=\frac{456976}{390625}=\left(\frac{26}{25}\right)^{4}$
or, $n=4$ years.
S30. Ans.(a)
Sol. Area $=2 \mathrm{x}^{2} \mathrm{~m}^{2}$

$2 x$

$$
\begin{aligned}
& \therefore 2 \mathrm{x}^{2} \times 2=256 \\
& \mathrm{x}=64 \\
& \mathrm{x}=8
\end{aligned}
$$

\therefore Required length $=2 \times 8=16 \mathrm{~m}$
S31. Ans.(e)
Sol. I. $\rightarrow \mathrm{I}=\mathrm{r}=\frac{132}{44} \times 7=21 \mathrm{~cm}$
II. $\rightarrow 2 \mathrm{l}+\left(\frac{5}{24} \mathrm{P}\right) \times 2=\mathrm{P}$
$\mathrm{P}=\frac{12}{7} \times 2 \mathrm{l}=72 \mathrm{~cm}$
$\mathrm{b}=36-21=15 \mathrm{~cm}$
area $=21 \times 15=315 \mathrm{~cm}^{2}$
So both I \& II are neccssary
S32. Ans.(b)
Sol. I. $\rightarrow x=3,4$
II. $\rightarrow \mathrm{x}=3, \mathrm{y}=6$ or $\mathrm{y}=3, \mathrm{x}=6$
$x^{2}+y^{2}=45$
Statement II alone is sufficient
S33. Ans.(b)
Sol. Let length of ${ }^{\text {st }}$ train $=L_{1}$
Length of II ${ }^{\text {ndtrain }}=\mathrm{L}_{2}$

1. $\rightarrow \frac{L_{1}}{2 \mathrm{x}}=9$
2. $\rightarrow \frac{\frac{L_{1}+L_{2}}{(3 x+2 x)}}{(3 x}=45$
$\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{5 \mathrm{x}}=45$
But when running in same direction relative speed will be
$3 \mathrm{x}-2 \mathrm{x}=\mathrm{x}$
$\frac{\mathrm{L}_{1}+\mathrm{L}_{2}}{\mathrm{x}}=45 \times 5=225$ seconds
So Statement II alone is sufficient

S34. Ans.(d)
Sol. 1. \rightarrow Discount = 15\%
SP - CP = 16 Rs
2. $\rightarrow \mathrm{MP}-\mathrm{SP}=\frac{150}{100} \times 16=24 \mathrm{Rs}$

So even using both statements, we can't find the marked price of the article.
S35. Ans. (c)
Sol. Let there are x no. of columns
St. $\mathrm{I}-0.625 \mathrm{x} \times \mathrm{x}=40, \mathrm{x}^{2}=64$
$x=8$, no. of rows $=5$
student in each column $=5$
St. II - $\frac{5}{8} x \times x=40, x^{2}=64, x=8$
no. of rows $=5$
So either I or II is sufficient to answer the question
S36. Ans. (c)
Sol. $2 x^{2}-12 x-9 x+54=0$
$2 x(x-6)-9(x-6)=0$
$x=6, \frac{9}{2}$
$y^{2}-7 y-7 y+49=0$
$y(y-7)-7(y-7)=0$
$y=7,7$
$\mathrm{x}<\mathrm{y}$
S37. Ans. (b)
Sol. $x^{2}-14 x-5 x+70=0$
$x(x-14)-5(x-14)=0$
$x=5,14$
$2 y^{2}-10 y-7 y+35=0$
$2 y(y-5)-7(y-5)=0$
$y=5, \frac{7}{2}$
$x \geq y$
S38. Ans. (d)
Sol. $3 x^{2}+8 x-3 x-8=0$
$x(3 x+8)-1(3 x+8)=0$
$x=1, \frac{-8}{3}$
$y^{2}-y-3 y+3=0$
$y(y-1)-3(y-1)=0$
$y=1,3$
$\mathrm{x} \leq \mathrm{y}$
S39. Ans. (d)
Sol. $12 x^{2}-6 x-10 x+5=0$
$6 x(2 x-1)-5(2 x-1)=0$
$\mathrm{x}=\frac{1}{2}, \frac{5}{6}$
$18 y^{2}-30 y-15 y+25=0$
$6 y(3 y-5)-5(3 y-5)=0$
$\mathrm{y}=\frac{5}{3}, \frac{5}{6}$
$\mathrm{x} \leq \mathrm{y}$
S40. Ans. (a)
Sol. $3 x^{2}-3 x-8 x+8=0$
$3 x(x-1)-8(x-1)=0$
$\mathrm{x}=1, \frac{8}{3}$
$3 y^{2}+12 y+8 y+32=0$
$3 y(y+4)+8(y+4)=0$
$y=-4, \frac{-8}{3} ; x>y$

