CAREER POWER

 AN IIT/IMALUMNI CロMPANY

 AN IIT/IMALUMNI CロMPANY}

SBI PO (Quantitative Aptitude) memory based held on 04/06/17

Solution

S46. Ans.(b)
Sol.
For quantity I \rightarrow
First the different no. of ways to arrange 5 men or 5 women $=5$!
Now,
_M_M_M_M_M_
No. of ways of arranging 5 men and 5 women such that no two women or men sit together $=2 \times 5!\times 5$!
For quantity II \rightarrow
No. of ways of arranging 5 men and 5 women such that all men sit together $\rightarrow 6!\times 5$!
$\because 2 \times 5!\times 5!<6!\times 5$!
Then Quantity I < Quantity II
S47. Ans.(b)
Sol.

$$
\begin{array}{rlc}
10 \mathrm{~m}+10 \mathrm{n} & =100 \mathrm{k} \\
10 \mathrm{~m}+7 \mathrm{n} & =701 \\
\hline 10 \mathrm{n}-7 \mathrm{n} & =100 \mathrm{k}-701 \\
3 \mathrm{n} & =100 \mathrm{k}-701
\end{array}
$$

$3 n=10(10 k-7 l)$; Hence n is divisible by 10 . Thus option A and B together are needed to solve the question.
S50. Ans.(b)
Sol.
Let speed of boat in still water on Thursday $=x$
$\frac{12 \times 18}{x-1}=\frac{16 \times 15}{16+2}$
$=\frac{12 \times 18 \times 18}{16 \times 15}=x-1$
$\mathrm{x}-1=16.2$
$\mathrm{x}=17.2 \mathrm{kmph}$
S51. Ans.(c)
Sol.
Let speed of boat in still water on Monday $=x$
$\frac{15 \times 18}{x-2}=\frac{45}{11}+\frac{16 \times 15}{x+2}$
$15\left(\frac{18}{x-2}-\frac{16}{x+2}\right)=\frac{45}{11}$
S48. Ans.(a)
$\frac{18}{x-2}-\frac{16}{x+2}=\frac{3}{11}$
If we put $x=20$
Then it satisfy the above equation
$\therefore \mathrm{x}=20 \mathrm{kmph}$
$9 y-9 x=36$
$y-x=4$
\therefore unit digit of the no. should be 4 more than the ten's digit of the number.
\therefore such possible numbers from 1 to 63 are
$=04,15,26,37,48,59$
\therefore Required probabity $=\frac{6}{63}$
For quantity II \rightarrow
Possible numbers from 1 to $63=8,24,40,56$
Required probability $=\frac{4}{63}$
\therefore Quantity I > Quantity II
S49. Ans.(b)
Sol.
From $\mathrm{A} \rightarrow \mathrm{m}+\mathrm{n}=10 \times \mathrm{k}$ (Let k is an integer value)
From $B \rightarrow 10 m+7 n=70 \times 1$ (let l is an integer value)
From $C \rightarrow n>m$
From A and B

S52. Ans.(d)
Sol.
Speed of boat in still water on Tuesday $=15 \mathrm{~km} / \mathrm{hr}$
$66 \frac{2}{3} \%=\frac{2}{3}$
Speed of boat in still water on Wednesday $=15+\frac{2}{3} \times 15$
$=25 \mathrm{~km} / \mathrm{hr}$
$\frac{14 \times 18}{25-x}=\frac{14 \times 15}{(15+3)} \times \frac{9}{10}$
$\frac{6}{25-x}=\frac{5}{18} \times \frac{9}{10}$
$\frac{6}{0.25}=25-x$
$25-x=24$
$\mathrm{x}=1 \mathrm{~km} / \mathrm{hr}$
S53. Ans.(a)
Sol. Given
Speed of boat in still water on Saturday $=21 \mathrm{~km} / \mathrm{h}$
$28 \frac{4}{7} \%=\frac{2}{7}$
\therefore Speed of boat in still water on Sunday $=21-\frac{2}{7} \times 21$
$=21-6=15 \mathrm{kmph}$
$\frac{10 \times 18}{21-\mathrm{x}}=\frac{19}{16} \times \frac{10 \times 15}{15+4}$
$\mathrm{x}=1.8$
Required time $=\frac{57.6}{21-1.8}$
$=\frac{57.6}{19.2}=3 \mathrm{hrs}$
S54. Ans.(a)
Sol.
$\frac{18 \times 18}{x-4}=2+\frac{12 \times 15}{17+1}$
$18 \times 18=12(x-4)$
$\mathrm{x}-4=27$
$\mathrm{x}=31 \mathrm{kmph}$
Required upstream speed $=31-4=27 \mathrm{kmph}$

Solutions (55-57)

For Bag A -
No. of yellow balls $=18$
No. of green balls $=18+4=22$
According to the question
Total no. of balls in bag A are in multiple of 13.
so by hit and trial method.
If we assume total no. of balls in bag A $=65$
Then, No. of black balls $=25$
It satisfies the probability Statement given in the question.

By similar method for Bag B -
No. of Yellow balls $=22$
No. of Green balls $=25$

No. of Black balls $=28$

For Bag C \rightarrow
No. of Yellow balls $=42$
No. of Green balls $=21$
No. of Black balls = 15

S55. Ans.(d)
Sol.
After replacement \rightarrow
Yellow no of balls in beg $B=22-x$
Black no. of balls in beg $B=28+5=33$
Green no. of balls in bag $B=25$
Then, $\frac{33}{22-x+33+25}=\frac{11}{26}$
$\frac{33}{80-x}=\frac{11}{26}$
$78=80-x$
$x=2$
S56. Ans.(e)
Sol.
Required probability $=\frac{18}{65} \times \frac{22}{75}+\frac{22}{65} \times \frac{25}{75}+\frac{25}{65} \times \frac{28}{75}$
$=\frac{1646}{65 \times 75}$

S57. Ans.(c)
Sol.
Required $\%=\frac{40-1}{40} \times 100$
$=\frac{39}{40} \times 100$
$=97.5 \%$
S58. Ans.(c)
Sol.
Let MP of item-II by seller $A=100 x$
\therefore MP of item-II by seller $\mathrm{C}=100 x$
$\frac{\frac{100}{100+s} \times 68 x}{\frac{100}{100+2 s-4} \times 84 x}=\frac{17}{21}$
$\frac{68}{84} \times \frac{96+2 s}{100+s}=\frac{17}{21}$
$\frac{96+2 s}{100+s}=\frac{1}{1}$
$96+2 s=100+s$
$s=4$
S59. Ans.(b)
Sol.
Let mark price of item II = 100x
Let mark price of item III $=100 y$
$\therefore 100 x+100 y=6000$
$x+y=60 \ldots$...i)
And, $72 x-84 y=420$
$6 x-7 y=35$

From (i) and (ii)
$y=25$
$x=35$
\therefore M.P of item II $=3500$
M.P. of item III $=2500$

Required $\%=\frac{3500-2500}{2500} \times 100$
$=\frac{1000}{25}$
$=40 \%$
S60. Ans.(a)
Sol.
Let M.P. of item II = $100 a$
\therefore S.P. of item II by seller $A=68 a$
S.P. of item II by seller $B=(100-x) a$

Then $(168-x) a=(3888) \times 2$
$(184-x) a=4320 \times 2$
$\therefore \frac{168-x}{184-x}=\frac{9}{10}$
$(10 \times 168)-10 x=9 \times 184-9 x$
$x=24$
$a=54$
Now S.P. of item H by seller $\mathrm{C}=4536$ Rs.

S61. Ans.(e)
Sol.
Let S.P. of item I $=500$
\therefore S.P. of item III $=600$
C. P. of item $I=\frac{100}{125} \times 500=400$
C. P. of item II $=\frac{100}{120} \times 600=500$

Profit on item $I=500-400=100$
$\therefore 100 \rightarrow 750$
$1 \rightarrow 7.5$
$(200) \rightarrow(200 \times 7.5)=1500$ Rs.
S62. Ans.(a)
Sol.
C.P. $=60$ Rs.
M.P. $=\frac{200}{300} \times 60+60$

$$
=40+60
$$

$$
=100
$$

Total C.P. $=60 \times 5=300$ Rs.
Total selling price should be $=380$ Rs.
S.P. of item III by seller $E=(380-64-67-86-84)=79$
\therefore Minimum required discount $=(100-79)=21 \%$

S63. Ans.(b)
Sol.
From question we observe that sum of investment of A and C is equal to B for first quarter.

So, if ratio of investment of B is equal to $(A+C)$ for all quarters of year then B 's profit is 50% of total profit.
So profit of $B=\frac{125000}{2}$

$$
=62500
$$

S64. Ans.(b)
Sol.
Total amount invested by $\mathrm{A}+\mathrm{B}$ in a year
$\Rightarrow 2500+7 x+7 y+13 z=9000$ \qquad
Total amount invested by B and C in a year
$\Rightarrow 2300+8 x+7 y+13 z=10500$.
From (i) and (ii)
$200-x=-1500$
$x=1700$
Total amount for second quarter $=17000$
S65. Ans.(d)
Sol.

In $\frac{1}{2}$ h train A will cover $=27 \mathrm{~km}$
Distance between P and $\mathrm{Q}(x)=27+\frac{13}{3} \times 120$

$$
\begin{aligned}
& =27+520 \\
& =547 \mathrm{~km}
\end{aligned}
$$

Total time taken in given condition $=\left(\frac{1}{2}+\frac{13}{3}\right) h=\frac{29}{6} h$
New time taken according to condition $=\frac{547+2 \times 54}{(66-54)}$

$$
=\frac{655}{12} h
$$

Required difference in time $=\frac{655}{12}-\frac{29}{6}=\frac{597}{12}$ $=49$ hour 45 min .

S66. Ans.(c)
Sol.

Required ratio $=\frac{66-54}{66+54}=1: 10$
S67. Ans.(a)
Sol.
Area of quadrilateral $\mathrm{BFDE}=$ Area of rectangle $\mathrm{ABCD}-$ Area of $\triangle \mathrm{ABE}$ - Area of $\triangle \mathrm{DCF}$

$$
\begin{aligned}
& =120-30-25 \\
& =65
\end{aligned}
$$

S68. Ans.(a)
Sol.
Ratio of Investment of A, B and C
$(3000 \times 4+1800 \times 5+3600 \times 3)$

$$
:(4000 \times 4+8000 \times 5)
$$

$$
:(14000+33600)
$$

$31800: 56000: 47600$
159: 280: 238
Profit of $C=\frac{238}{677} \times 6770000$
$=238000$
Average of profit earned by $(A+B+C) \approx 225666$

+ CAREERPOWER

RBI GRADE ‘B’ 2017

PHASE-I
30 TOTAL TEST
-10 MOCKS -20 PRAGTICE SETS
Price : ₹699/visit: store.adda247.com

S69. Ans.(b)
Sol.
Let the C do in one day $=4 y$ work
Let the D do in one day $=5 y$ work
2 day work of $\mathrm{C}+\mathrm{D}=9 y$
In 44 day they will complete $9 y \times 22=198 y$
In another $\frac{1}{2}$ days $2 y$ work will be done
C will take $=\frac{200 y}{4 y}$ days $=50$ day
D will take $=40$ days.
C and D will complete work together in $=\frac{50 \times 40}{90}=\frac{200}{9}$
According to condition
$\frac{200}{9 x}+\frac{200}{9 \times 2 x}=1$
$\frac{400+200}{18 x}=1$
$\Rightarrow x=33 \frac{1}{3}$
S70. Ans.(a)
Sol.
Let E do work in $4 x$ days
Let F do work in $5 x$ days
$\frac{24}{5 x}+\frac{24}{4 x}+\frac{20}{\frac{100}{3}}+\frac{20}{\frac{200}{3}}=1$
$24\left(\frac{9}{20 x}\right)+\frac{60}{100}+\frac{60}{200}=1$
$\frac{24 \times 9}{20 x}=1-\frac{180}{200}$
$\frac{24 \times 9}{20 x}=\frac{1}{10}$
$x=108$
Together E and F can do work in $=\frac{4 \times 108 \times 5 \times 108}{9 \times 108}$ $=240$ days
Required difference $=\frac{240}{4 \times 108}-\frac{240}{5 \times 108}$
$=\frac{240}{108}\left(\frac{1}{20}\right)=\frac{1}{9}$
S71. Ans.(e)
Sol.

As per given condition
$\frac{5}{10}+\frac{5}{15}+\frac{x}{12}+\frac{x}{18}=\left(1-\frac{1}{36}\right)$
$\frac{5 x}{36}=\frac{35}{36}-\frac{5}{6}$
$x=\frac{36}{5}\left(\frac{35-30}{36}\right)$
$=1$ days.
S72. Ans.(d)
Sol.
Part of work completed by $\mathrm{E}=\frac{5}{20}=\frac{1}{4}$
3 day work by $(A+B+D)=\frac{1}{10}+\frac{1}{12}+\frac{1}{18}$
$=\frac{18+15+10}{180}=\frac{43}{180}$
9 day work $=(3 A+3 B+3 D)=\frac{129}{1.80}$
Remaining work $=\frac{3}{4}-\frac{129}{180}$
$=\frac{135-129}{180}=\frac{6}{180}=\frac{1}{30}$
this will be done by A in $=\frac{1}{30} \times 10=\frac{1}{3}$ days
so B worked for 3 days.
S73. Ans.(d)
Sol.
Work done by A, C and E on Job Z $=\frac{2}{10}+\frac{2}{15}+\frac{2}{20}$
$=\frac{12+8+6}{60}$
$=\frac{26}{60}=\frac{13}{30}$
Remaining work done by B and D in $20 x$ and $21 x$
$\frac{20 x}{12}+\frac{21 x}{18}=\frac{17}{30}$
$\frac{60 x+42 x}{36}=\frac{17}{30} \Rightarrow 102 x=17 \times \frac{36}{30}$
$x=\frac{6}{30}=\frac{1}{5}$
Required days $=20 \times \frac{1}{5}=4$ days
S74. Ans.(c)
Sol.
According to question
$\frac{2}{10}+\frac{4 x}{12}+\frac{3}{15}+\frac{3 x}{18}+\frac{2}{20}=1$
$\Rightarrow \frac{1}{5}+\frac{x}{3}+\frac{1}{5}+\frac{x}{6}+\frac{1}{10}=1$
$\frac{6+10 x+6+5 x+3}{30}=1$
$15 x+15=30$
$x=1$
Required difference $=4 x-3 x$
$=4-3=1$
After 20\% of the contents of the vessel are removed,
Remaining contents $=\frac{80}{100}(12.5)=10$ litres.
Ratio of water and milk in it $=1: 4$.
\therefore It contains $\frac{4}{5}(10)=8$ litres of milk and 2 litres of water.
To reverse the ratio, 2 litres of water must be made 32 .
$\therefore \mathrm{x}=30$ litres of water must be added.
To reverse this ratio again 8 litres of milk must be made $4(32)=128$ litres.
$\therefore \mathrm{y}=128-8=120$ litres of milk must be added.
S78. Ans.(b)
Sol.
We can get ratio of investment from either statement B alone or C alone so profit of B can be determined from option b

S79. Ans.(d)
Sol.
From A and C we can determine the value ratio of efficiency between men, women and children from A \& B we can also determine the value of ratio of men, women and children. We can calculate the answer from B and C.

3 days work of C and 1 day work of $B=1 / 3$
Days required $=9$ days
S76. Ans.(b)
Sol.
Rhombus PQRS:
Side of $\mathrm{PQRS}=\frac{\sqrt{6^{2}+8^{2}}}{2}$
$=\frac{10}{2}=5 \mathrm{~cm}$
Rhombus MLKJ

$\sin 30=\frac{\text { perpendicular }}{\text { Hypotenuse }}$
$\frac{1}{2}=\frac{75}{\text { side of MLJK }}$
Side of MLJK = 15 cm
Now, $\mathrm{AB}=5 \mathrm{~cm}$
$C D=15 \mathrm{~cm}$
So median $\mathrm{XY}=\frac{5+15}{2}=10 \mathrm{~cm}$

S80. Ans.(c)
Sol.
From A
Total price $=\frac{3828 \times 100}{120}$
From C
$(x+y)-(x-y)=28$
$y=14$
And $\mathrm{x}+\mathrm{y}=90$ (From B)
$\mathrm{x}=76$
So total value can be determined

S77. Ans.(c)
Sol.

