Database Management Systems

	which hormal form is considered adequate for relational database design:						
	(a) 2 NF (b) 3 NF	(c)	4 NF	(d) BCNF			
2.	. The concept of locking can be used to solve the problem of						
	(a) lost update	(b)	uncommitted depo	endency			
	(c) inconsistent data	(d)	deadlock				
3.	Given relations $R(w,x)$ and $S(y,z)$, t						
	SELECT DISTINCT w	, X					
	FROM R, S						
	is guaranteed to be same as R, if						
	(a) R has no duplicates and S is not	n-empty					
	(b) R and S have no duplicates						
	(c) S has no duplicates and R is not	n-empty					
	(d) R and S have the same number	of tuples					
4.	A functional dependency of the form $X \to Y$ is trivial if						
	(a) $Y \subseteq X$ (b) $Y \subset X$	(c)	$X \subseteq Y$	(d) $X \subset Y$ and $Y \subset X$			
5.	If every non-key attribute is functionally dependent on the primary key, then the relation w						
	be in						
	(a) first normal form	(b)	second normal for	m			
	(c) third normal form	(d)	fourth normal form	n			
				1			

6. The column of a table is referred to as the

(a) tuple
(b) attribute
(c) entity
(d) degree

The next four questions are based on the following details. Consider the given schemes.

```
Branch_scheme = (Branch_name, assets, Branch_city)

Customer_scheme = (Customer_name, street, Customer_city)

Deposit_scheme = (Branch_name, account_number, Customer_name, balance)

Borrow_scheme = (Branch_name, loan_number, Customer_name, amount)

Client_scheme = (Customer_name, banker_name)
```

- 7. Using relational algebra, the query that finds customers who have a balance of over 1000 is
 - (a) $\pi_{\text{customer_name}}$ ($\sigma_{\text{balance}} > 1000$ (Deposit))
 - (b) σ_{customer_name} (π_{balance > 1000} (Deposit))
 - (c) π_{customer_name} (σ_{balance > 1000} (Borrow))
 - (d) $\sigma_{\text{customer_name}}$ ($\pi_{\text{balance}} > 1000$ (Borrow))
- 8. Which of the following queries finds the clients of banker Agassi and the city they live in?
 - (a) $\pi_{\text{Client.Customer_name.Customer_City}}$ ($\sigma_{\text{client.Customer_name-Customer_name}}$ ($\sigma_{\text{Banker_name-*Agassi*}}$ (Client × Customer))
 - (b) $\pi_{\text{Customer_name.Customer_City}}(\sigma_{\text{Banker_name.*Agassi*}})$ (Client × Customer))
 - (c) $\pi_{\text{Client.Customer_name.Customer_City}}$ ($\sigma_{\text{Banker_name-"Agassi"}}$ ($\sigma_{\text{client.Customer_name-Customer.Customer_name}}$ (Client × Customer))
 - (d) $\pi_{\text{Customer_name.Customer_City}}(\sigma_{\text{Banker_name.*Agassi*}})$ (Client × Customer))
- 9. Which of the following tuple relational calculus finds all customers who have a loan amount of more than 1200?
 - (a) (t(Customer_name) | t ϵ borrow Λ t[amount] > 1200}
 - (b) {t | t(Customer_name) ε borrow Λ t[amount] > 1200}
 - (c) (t | \exists s ε borrow (t[Customer_name] = s[Customer_name] Λ s[amount] > 1200))
 - (d) None of the above
- 10. Which of the following Domain relational calculus finds all customers who have a loan amount of over 1200?
 - (a) (<c>| ∃ b, 1, a (<b, 1, c, a> ε borrow V a > 1200)}
 - (b) {<c>| ∃ b, 1, a (<b, 1, c, a> ε borrow Λ a > 1200)}
 - (c) {<c>| ∃ <b, 1, c, a> ε borrow Λ a > 1200)}
 - (d) {<c>| <b, 1, c, a> ε borrow Λ a > 1200)}
- 11. Given the functional dependencies

```
X \rightarrow W; X \rightarrow Y; Y \rightarrow Z and Z \rightarrow PQ
```

which of the following does not hold good?

- (a) X → Z
- (b) W → Z
- (c) $X \rightarrow WY$
- (d) None of the above

- 12. What are the potential problems when a DBMS executes multiple transactions concurrently?
 - (a) The lost update problem

- (b) The dirty read problem
- (c) The unrepeatable read problem
- (d) The phantom problem
- 13. The data flow model of an application mainly shows
 - (a) the underlying data and the relationships among them
 - (b) processing requirements and the flow of data
 - (c) decision and control information
 - (d) communication network structure
- 14. Consider the set of relations given below and the SQL query that follows:

Students: (Roll_number, Name, Date_of_birth)

Courses: (Course_number, Course_name, Instructor)

Grades: (Roll_number, Course_number, Grade)

SELECT DISTINCT Name

FROM Students, Courses, Grades

WHERE Students.Roll_number = Grades.Roll_number

AND Courses.Instructor = Korth

AND Courses.Course number = Grades.Course number

AND Grades.Grade = A

Which of the following sets is computed by the above query?

- (a) Names of students who have got an A grade in all courses taught by Korth
- (b) Names of students who have got an A grade in all courses
- (c) Names of students who have got an A grade in at least one of the courses taught by Korth
- (d) None of the above
- 15. Which of the following desired features are beyond the capability of relational algebra?
 - (a) Aggregate computation

(b) Multiplication

(c) Finding transitive closure

- (d) None of the above
- 16. In airline reservation system, the entities are date, flight number, place of departure, destination, type of plane and seats available. The primary key is
 - (a) flight number

(b) flight number + place of departure

(c) flight number + date

(d) flight number + destination

17. For a database relation R(a,b,c,d) where the domains of a,b,c, and d include only atomic values, only the following functional dependencies and those that can be inferred from them hold.

$$a \rightarrow c$$

 $b \rightarrow d$

The relation is in

- (a) first normal form but not in second normal form
- (b) second normal form but not in third normal form
- (c) third normal form
- (d) none of the above

The canonical cover for this set is

(a) $A \rightarrow BC$ and $B \rightarrow C$

(b) $A \rightarrow BC$ and $AB \rightarrow C$

(c) $A \rightarrow BC$ and $A \rightarrow B$

(d) $A \rightarrow B$ and $B \rightarrow C$

- 50. Assume transaction A holds a shared lock R. If transaction B also requests for a shared lock on R, it will
 - (a) result in a deadlock situation
 - (b) immediately be granted
 - (c) immediately be rejected
 - (d) be granted as soon as it is released by A

Answers

1.	ь	2. a, b, c	3. a	4. a	5. c
6.	b	7. a	8. a, c	9. c	10. b
11.	b	12. a,b,c,d	13. b	14. c	15. a,b,c
16.	c	17. a	18. d	19. c	20. с
21.	c	22. c	23. d	24. c	25. c, d
26.	d	27. с	28. a	29. a	30. a, b, c
31.	a, b	32. a, b, c, d	33. a	34. a	35. a
36.	a	37. с	38. a	39. d	40. b
41.	b	42. b	43. a, b, c, d	44. d	45. a, b, c
46.	a, b, c	47. b	48. a,b,c	49. a	50. b

Explanations

18. The maximum number of tuples results when each of the 120 students enrolls for each of the 8 courses, giving 120 × 8 = 960 tuples. The minimum number of tuples results when all the 120 students enroll for the same course, giving 120 × 1 = 120 tuples.