Chapter 15

Software Engineering

1.	Software	engineering	primarily	aims o	n develo	pine
	SOLLMALC	CHETHOUSEHIE	DI IIII GILIA Y	WALLEY O	u ucreio	

(a) reliable software

- (b) cost effective software
- (c) reliable and cost effective software
- (d) none of the above

- 2. A good specification should be
 - (a) unambiguous

(b) distinctly specific

(c) functional

- (d) none of the above
- 3. Which of the following is a tool in design phase?
 - (a) Abstraction

(b) Refinement

(c) Information hiding

- (d) None of the above
- 4. Information hiding is to hide from user, details
 - (a) that are relevant to him
 - (b) that are not relevant to him
 - (c) that may be maliciously handled by him
 - (d) that are confidential
- 5. Which of the following comments about object oriented design of software, is not true?
 - (a) Objects inherit the properties of the class
 - (b) Classes are defined based on the attributes of objects
 - (c) An object can belong to two classes
 - (d) Classes are always different
- Design phase includes
 - (a) data, architectural and procedural designs only
 - (b) architectural, procedural and interface designs only

- (c) data, architectural and interface designs only
- (d) data, architectural, interface and procedural designs

The next 5 questions are based on the information furnished below.

In a particular program, it is found that 1% of the code accounts for 50% of the execution time. To code the program in FORTRAN, it takes 100 man-days. Coding in assembly language is 10 times harder than coding in FORTRAN, but runs 5 times faster. Converting an existing FORTRAN program to an assembly language program is 4 times harder.

FO	RTRAN program to an	assembly language pro	gram is 4 times hard	er.			
ŧ7.	To completely write the program in FORTRAN and rewrite the 1% code in assembly lan- guage, if a project team needs 13 days, the team consists of						
	(a) 13 programmers		(b) 10 programmer	rs			
	(c) 8 programmers		(d) 100/13 program	nmers			
8.	If 99% of the program is written in FORTRAN and the remaining 1% in assembly language, the percentage increase in the programming time compared to writing the entire program in FORTRAN and rewriting the 1% in assembly language is						
	(a) 10	(b) 5	(c) 13	(d) 8			
⊧9.	If the entire program is written in FORTRAN, the percentage increase in the execution time, compared to writing the entire program in FORTRAN and rewriting the 1% in assembly language is						
	(a) 0.9	(b) 8	(c) 0.8	(d) 9			
10.	If 99% of the program is written in FORTRAN and the remaining 1% in assembly language, the percentage increase in the execution time, compared to writing the entire program in FORTRAN and rewriting the 1% in assembly language is						
	(a) 0.9	(b) 1	(c) 0.1	(d) 0			
11.	If a weightage of 3 is given to the programmers effort and a weightage of 2 is given to the execution time, then coding 99% in FORTRAN and the 1% in assembly language performs better than coding in FORTRAN completely and rewriting the 1% in assembly language by a factor of about						
	(a) 1.5 (l	b) 1.2 (c	(d)	it does not perform better			
12.	Data structure suitable	for the application is d	iscussed in				
	(a) data design		(b) architectural design				
	(c) procedural design		(d) interface design				
13.	Design phase will usua	illy be					
	(a) top-down	(b) bottom-up	(c) random	(d) centre fringing			
14.	Assertions are condition	ns which are true at the	e point of execution				
	(a) always	(b) sometimes	(c) many times	(d) no time			
15.	Assuming the existence of a start and end nodes for a program graph, the total number of paths is equivalent to the set of test data required to test the software.						
	(a) minimum	(b) maximum	(c) optimum	(d) supremum			

	(a) $x + n$	(b) x ⁿ	(c)	$x\log(n)$	(d) xn		
18.	Structured programming	g codes include					
	(a) sequencing		(b)	alteration			
	(c) iteration		(d)	multiple exit from	1 loops		
19.	Which of the following	is a desirable property	of a	module?			
	(a) Independency (b)	Low cohesiveness	(c)	High coupling	(d) Multi functional		
20.	Which of the following types of maintenance takes the maximum chunk of the total maintenance effort in a typical life cycle of a software product?						
	(a) Adaptive maintenance		(b)	b) Corrective maintenance			
	(c) Preventive maintena	ance	(d)) Perfective maintenance			
21.	An important aspect in	coding is					
	(a) readability		(b)	productivity			
	(c) to use as small a me	mory space as possible	(d)	brevity			
22.	One way to improve rea	dability in coding is to)				
	(a) avoid goto statements						
	(b) name variables and functions according to their use						
	(c) modularize the program						
	(d) none of the above						
23. The data flow model of an application mainly shows							
	(a) the underlying data and the relationship among them						
(b) processing requirements and the flow of data							
	(c) decision and control information						
	(d) communication nety						
24.	 According to Brooks, if n is the number of programmers in a project team then the number of communication paths is 						
	(a) $n(n-1) / 2$	(b) nlogn	(c)	n	(d) n(n+1) / 2		
25.	The extent to which the invalid input is called a		to o	perate correctly des	spite the introduction of		
	(a) reliability	(b) robustness	(c)	fault-tolerance	(d) portability		
26.	If the number of conditi possible is	ons in a decision table	is n,	, the maximum nur	nber of rules (columns)		
	(a) n	(b) 2n	(c)	2"	(d) $\log_2 n$		

(d) x(y+z)

37.	Which of the following software engineering concept does Ada language support?					
	(a) Abstraction	(b)	Generic			
	(c) Information hiding	(d)	None of the above			
*38.	In unit testing of a module, it is found that for	a se	t of test data, at the maximum 90% of the			
	code alone were tested with the probability of	suce	ess 0.9. The reliability of the module is			
	(a) greater than 0.9	(b)	equal to 0.9			
	(c) at most 0.81	(d)	at least 1/0.81			
39.	Which of the following testing methods is norm	nally	used as the acceptance test for a software			
	system?	4.5	The state of the state of			
	(a) Regression testing		Integration testing			
40	(c) Unit testing	7 7	Functional testing			
40.	A computer program can often be a very satisf traffic conditions.	racto	ry of a physical system such as road			
		(c)	simulation (d) model			
41.	for(i = 0, s = 0; i < n; i++)					
	The symbolic execution with $n = 3$ at $i = 2$, s					
	(a) $a0 + a1 + a2 + a3$		a0 + a1 + a2			
	(c) a0 + a1	(d)	a0 + a1 + a3			
*42.	On an average, the programmer months is given	n by	3.6 × (KDSI) 1.2. If so, a project requiring			
	one thousand source instructions will require					
	(a) 3.6 PM (b) 0.36 PM	(c)	0.0036 PM (d) 7.23 PM			
43.	 Software testing techniques are most effective if applied immediately after 					
	(a) requirement specification	(b)	design			
	(c) coding	(d)	integration			
44.	 Consider the following code for finding the factorial of a given positive integer. 					
	IFACT = 1					
	DO 100 I = 2, N, 2					
	100 IFACT = IFACT * I *	_				
	For which values of N, the above FORTRAN					
	(a) N is even		N is odd			
45	(c) N is perfect number	1 -	N mod 3 = 0			
45.	For the above code, using symbolic execution, (a) $1 * 1 * 2 * 3 * 4 * 5$		1 * 2 * 3 * 4 * 5			
	(c) 1 * 1 * 2 * 3 * 4	,-,	1 * 2 * 3 * 4			
46	Which of the following is not an assertion?	(4)	1 - 2 - 3 - 4			
40.	(a) P is true, P and Q are true and K or not (Q	2) is	true implies K is true			
			-			
	 (b) P is true, P and Q are true and K or not (Q) is true implies K is true. (c) P is true, P and Q are false and K or Q is true implies K is true. 					
	(d) P is true. P and Q are true and K or not (K) is true implies K is true.					

45. c

50. c

47.	The reliability of a program be program that serves the same purposes wrong result for the same input is	oose) is 0.9. T		_	
	(a) 0.72 (b) 1.7		(c) 0.1	(d) 0.02	
48.	The program volume of a source 6 operands including 2 unique op		10 operators in	cluding 6 unique opertors, and	d
	(a) 48 (b) 120		(c) 720	(d) insufficient data	
*49.	To increase reliability, fault tole modules. If the problem can be success 0.7, the probability that it	solved by 5	different mod	ules, each with probability of	
	(a) 0.3 (b) 0.03		(c) 0.49	(d) 0.05	
50.	In object-oriented design of softw	are, objects h	ave		
	(a) attributes and name only		(b) operations	and name only	
	(c) attributes, name and operation	ns	(d) none of th	-	
		Answe	15		
1.	c 2. a, b, c	3. a, b,	c 4.	с 5. с	
6.	d 7. c	8. b	9.	c 10. d	
11.	d 12. a	13. a	14.	a 15. a	
16.	d 17. d	18. a, b,	c 19.	a 20. d	
21.		23. b	24.		
26.		28. b	29.		
31.	, .,	33. d	34.		
36		38. c	39.		

Explanations

44. b

49. b

43. b

48. a

41. b

46. d

42. a

47. d

- Writing the whole program in FORTRAN takes 100 man-days. Rewriting the 1% code takes 4 man-days. Altogether 104 man-days. If it is completed in 13 days, 104/13 = 8 men should be involved.
- 8. The first case takes 99 + 10 = 109 man-days. The second case takes 100 + 4 = 104 man-days. The required percentage is $(109 104) \times 100/100 = 5$.
- 9. Let the first case takes 100 units of time to execute. The second case will take 99 + (1/5) units of time, as coding the 1% in assembly language will take 1/5 units of time. Hence the required percentage is 0.8 × 100/100 = 0.8.
- 10. In both the cases, the final program will have the same 99% of the code in FORTRAN and the remaining 1% in assembly language. Hence the execution time will remain the same.
- 11. The first case has a measure of ((3 × 109) + 2 × (99 + 1/5))/5 and the second ((3 × 104) + 2 × (99 + 1/5))/5. Lower the measure, the more preferable it is.