Adda 247 Publications

BIDKS

$20+$ IBPS PO PRELIMS 2018 MOCK PAPER BASED ON LLTEST PATTERN
(EnglishMelium)

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

Solutions

S26. Ans.(c)

Sol. C.P. of 10 note books $\Rightarrow 140 \times 10=1400$ Rs.
Profit on selling one pen $\Rightarrow \frac{50 \times 200}{100}=$ Rs 100
Number of pen required $\Rightarrow \frac{1400}{100}=14$
S27. Ans.(d)
Sol. Let speed of slower train $=2 x$
\Rightarrow speed of faster train $=5 x$
ATQ,
$\frac{150+200}{2 x+5 x}=15$
$x=\frac{10}{3}$
Time required
$=\frac{350}{\frac{50}{3}-\frac{20}{3}}=35$ second

S28. Ans.(b)
Sol. Ratio of profit share of B and E is
$35 \% \times 80,000 \times 9: 15 \%$ of $80,000 \times 12=7: 4$
Required difference $=\frac{(7-4)}{11} \times 15400$
$=\frac{3}{11} \times 15400=R s 4200$

S29. Ans.(d)

Sol. Ratio of profit share of A, C and D is

S30. Ans.(a)

Sol. Amount invested by F $=\frac{15}{100} \times 80,000+4000$
$=12000+4000=$ Rs 16,000
Amount invested by $A=\frac{25}{100} \times 80,000=$ Rs 20,000
Ratio of profit share of F, C and A
$\mathrm{F}: \mathrm{C}: \quad \mathrm{A}$
16000×6 : 12000×8 : $20,000 \times 12$
2 : 2 : 5
ATQ,
$5+2 \rightarrow 8750$
Then total annual profit $=9 \rightarrow \frac{8750}{7} \times 9=$ Rs 11,250
S31. Ans.(c)
Sol. I. $(x-2)^{2}=9$
$\Rightarrow(x-2)= \pm 3$
$\Rightarrow \mathrm{x}=5,-1$
II. $(2 y+8)^{2}=16$
$(2 y+8)= \pm 4$
$\Rightarrow y=-2,-6$
$x>y$

S32. Ans.(e)

Sol. I. $x^{2}-16 x+64=0$
$x^{2}-8 x-8 x+64=0$
$x(x-8)-8(x-8)=0$
$(x-8)(x-8)=0$
$\mathrm{x}=8,8$
II. $y^{2}-16 y+63=0$
$y^{2}-7 y-9 y+63=0$
$y(y-7)-9(y-7)=0$
$(y-9)(y-7)=0$
$y=9,7$
No relation can be established between $x \& y$

S33. Ans.(d)

Sol. I. $\frac{25}{\mathrm{x}^{2}}-\frac{15}{\mathrm{x}}+2=0$
$\Rightarrow 2 \mathrm{x}^{2}-15 \mathrm{x}+25=0$
$\Rightarrow 2 x^{2}-10 \mathrm{x}-5 \mathrm{x}+25=0$
$2 x(x-5)-5(x-5)=0$
$(2 x-5)(x-5)=0$
$x=\frac{5}{2}, 5$
II. $\frac{40}{\mathrm{y}^{2}}+1=\frac{13}{\mathrm{y}}$
$\Rightarrow y^{2}-13 y+40=0$
$\Rightarrow y^{2}-8 y-5 y+40=0$
$\Rightarrow \mathrm{y}(\mathrm{y}-8)-5(\mathrm{y}-8)=0$
$(y-5)(y-8)=0$
$y=5,8$
$\mathrm{y} \geq \mathrm{x}$

S34. Ans.(d)
Sol. I. $\frac{48}{x^{2}}-\frac{14}{\mathrm{x}}+1=0$
$\Rightarrow x^{2}-14 \mathrm{x}+48=0$
$\Rightarrow x^{2}-8 \mathrm{x}-6 \mathrm{x}+48=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-8)-6(\mathrm{x}-8)=0$
$\Rightarrow(\mathrm{x}-8)(\mathrm{x}-6)=0$
$\mathrm{x}=8,6$
II. $\frac{45}{y^{2}}+\frac{1}{y}=2$
$\Rightarrow 2 \mathrm{y}^{2}-\mathrm{y}-45=0$
$\Rightarrow 2 y^{2}-10 y+9 y-45=0$
$\Rightarrow 2 y(y-5)+9(y-5)=0$
$\Rightarrow(2 y+9)(y-5)=0$
$y=5,-\frac{9}{2}$
$x>y$

S35. Ans.(e)

Sol. I. $x^{2}+3 x-4=0$
$x^{2}+4 x-x-4=0$
$x(x+4)-1(x+4)=0$
$(x-1)(x+4)=0$
$\mathrm{x}=1,-4$
II. $\mathrm{y}^{2}+10 \mathrm{y}+24=0$
$y^{2}+4 y+6 y+24=0$
$y(y+4)+6(y+4)=0$
$(y+6)(y+4)=0$
$y=-4,-6$
$\mathrm{x} \geq \mathrm{y}$

S36. Ans.(c)

Sol. From I, II \& III
Let speed of Amit and Abhi be $4 x$ and $5 x \mathrm{~km} / \mathrm{hr}$ respectively.
$5 x-4 x=20$
$\therefore \mathrm{x}=20 \mathrm{~km} / \mathrm{hr}$
Let distance be d km
$\frac{\mathrm{d}}{80}-\frac{\mathrm{d}}{100}=1$
$\therefore \mathrm{d}=\frac{80 \times 100}{20}=400 \mathrm{~km}$

S37. Ans.(b)

Sol. From I and II
Let length and breadth be $3 \times \mathrm{m}$ and $2 \times \mathrm{m}$ respectively
$2 \Pi r=440 \quad[r \rightarrow$ radius of circle $]$
$\mathrm{r}=70 \mathrm{~m}$
\therefore breadth $=10 \mathrm{~m}$
\& length $=15 \mathrm{~m}$
\therefore Area $=10 \times 15=150 \mathrm{~m}^{2}$
Statement I and III are same.

S38. Ans.(a)

Sol. From I
Passed $=400$
From III
Let number of appeared \& Failed students be $5 x$ and $3 x$ respectively
$2 x=400 \Rightarrow x=200$
\therefore failed $=$ appeared - passed
$=1000-400=600$

S39. Ans.(a)

Sol. From I
$\frac{\mathrm{PR} \times 2}{100}=44000$
$\mathrm{PR}=2200000$
From II
$P+\frac{\text { PRT }}{100}=154000$

From III

Difference $=\frac{\mathrm{PR}^{2}}{100^{2}}$
$\frac{\mathrm{PR}^{2}}{100^{2}}=120$
From I and III R can be found.

S40. Ans.(e)

Sol. Let the smaller no. is x \& bigger no. is y.
From I
$Y=x+6$
From II,
$\frac{40}{100} \times x=\frac{30}{100} \times y$
From III,
$\frac{\frac{y}{2}}{\frac{x}{3}}=\frac{2}{1}$
$\Rightarrow 3 y=4 x$
\therefore from I and II or I and III

S41. Ans.(b)

Sol. Let amount of milk removed $=2 x$ lit
So, amount of water added $=x$ lit
Now
$\rightarrow \frac{165-2 x}{x}=\frac{5}{3}$
$\mathrm{x}=45$ lit

S42. Ans.(c)

Sol. At least one black can be chosen in three ways:

1. first one is black, second is non-black
2. first one is non-black, second is black
3. both are black.

Probability of selecting a box is $\frac{1}{2}$
Now, probability of choosing at least one black ball from first box
$=\frac{1}{2} \times\left(\frac{2}{4} \times \frac{2}{3}+\frac{2}{4} \times \frac{2}{3}+\frac{2}{4} \times \frac{1}{3}\right)=\frac{5}{12}$
Probability of choosing at least one black ball from $2^{\text {nd }}$ box
$=\frac{1}{2} \times\left(\frac{4}{16} \times \frac{12}{15}+\frac{12}{16} \times \frac{4}{15}+\frac{4}{16} \times \frac{3}{15}\right)=\frac{27}{120}$
Final probability
$=\frac{5}{12}+\frac{27}{120}=\frac{50+27}{120}=\frac{77}{120}$

S43. Ans.(a)

Sol. Let speed of train B be $x \mathrm{~m} / \mathrm{s}$
And length of train B be $y \mathrm{~m}$
Then length of train A is $2 y \mathrm{~m}$
Speed of train $A=84 \times \frac{5}{18}=\frac{210}{9} \mathrm{~m} / \mathrm{s}=\frac{70}{3} \mathrm{~m} / \mathrm{s}$
A.T.Q,
$\frac{2 y+y}{10}=\frac{70}{3}-x$
and $\frac{2 y+y}{22.5}=\frac{70}{3}-2 x$
solving (i) and (ii), $y=50 \mathrm{~m}$

S44. Ans.(c)

Sol. Let, inner radius of cylinder be ' x ' cm .
4
$\frac{4}{3} \pi(6)^{3}=\pi \times 32\left(5^{2}-x^{2}\right)$
or, $\frac{4 \times 6 \times 6 \times 6}{3 \times 32}=25-\mathrm{x}^{2}$
or, $x^{2}=25-9$
or, $x=4 \mathrm{~cm}$
Hence, thickness $=5-4=1 \mathrm{~cm}$.

S45. Ans.(b)
Sol. X's investment
$=(700 \times 3)+\left(700 \times \frac{5}{7} \times 3\right)+\left(500+200 \times \frac{3}{5}\right) \times 6$
$=$ Rs. 7320
Y's investment $=600 \times 12=$ Rs. 7200.
\therefore X's share from profit
$=\frac{7320}{(7320+7200)} \times 726=R s .366$.

S46. Ans.(a)
Sol. Total man working on odd days in March $=\frac{1000 \times 30}{100}=300$
Total odd days in March $=16$
Total man hour $=300 \times 16 \times 8$
Similarly,
Total man hour of April on even days $=15 \times 8 \times 1200$
Required $\%=\frac{300 \times 16 \times 8}{15 \times 8 \times 1200} \times 100=26 \frac{2}{3} \%$

S47. Ans.(d)

Sol. Total man hour of April
$=\frac{1500}{100} \times[20 \times 15+80 \times 15] \times 8=1,80,000$
Total man hour of August
$=750 \times \frac{40}{100} \times 15 \times 8+16 \times 750 \times \frac{60}{100} \times 8$
$=36000+57600=93,600$
Required difference $=1,80,000-93,600=86,400$

S48. Ans.(b)
Sol. Required ratio
$=\frac{10 \times 15 \times 70 \times 8}{15 \times 75 \times 4 \times 8}$
$=7: 3$

S50. Ans.(a)
Sol. Man-hour on even days \rightarrow
March $=15 \times 8 \times 700=84,000$
April $=15 \times 8 \times 1200=1,44,000$
August $=15 \times 8 \times 300=36,000$
Required Average $=88,000$

