adda 247
 publications

BIDKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

Solutions

S1. Ans.(a)

Sol. Efficiency ratio of A and B $=2: 1$
QUANTITY 1: Time taken by $\mathrm{B}=\frac{3}{1} \times \frac{15}{2}=\frac{45}{2}$ days
QUANTITY 2: Efficiency of $\mathrm{C}=2 \times \frac{3}{2}=3$
\therefore Time taken by $\mathrm{C}=\frac{45}{2} \times \frac{1}{3}=\frac{15}{2}$ days
QUANTITY 1 > QUANTITY 2

S2. Ans.(c)

Sol. Quantity 1: Let roots are a_{1}, a_{2} then $a_{1} a_{2}=\frac{-5}{2}$
$\Rightarrow \mathrm{a}_{2}=\frac{-5}{2}\left(\therefore \mathrm{a}_{1}=1\right)$
Quantity 2: 2.5
\therefore Quantity $2>$ Quantity 1

S3. Ans.(a)

Sol. Quantity 1:
Favorable cases
$=(1,4),(2,3),(3,2),(4,1),(5,5),(4,6),(6,4)$
$=7$
\therefore Required prob. $=\frac{7}{36}$
Quantity 2: $\frac{1}{6}$
Quantity 1 > Quantity 2

S4. Ans.(a)
Sol. $\mathrm{D}+\mathrm{h}=28 \mathrm{~m}$.
Quantity 1:7x = 28
$\mathrm{x}=4$
$\mathrm{r}=8 \mathrm{~m}$
$\mathrm{h}=12 \mathrm{~m}$
Curved surface area of cylinder $=2 \pi \times 8 \times 12$
$=2 \pi \times 96 \mathrm{~m}^{2}$
Quantity 2:
$\mathrm{h}=10 \mathrm{~m}$
Radius $=\frac{28-10}{2}$
$=9 \mathrm{~m}$

COMBO PRIME 2019
BANK \| SSC

1650 + TOTAL TESTS

Curved surface area of cylinder $=2 \pi \times 9 \times 10$
$=2 \pi \times 90 \mathrm{~m}^{2}$
Quantity $1>$ Quantity 2

S5. Ans. (e)

Sol. There will be two numbers 73 and 37 whose product of digits is 21
So if we take 73 then
Quantity 1 > Quantity 2
And if we take 37 then,
Quantity 2 > Quantity 1
So no relation can be established.

S6. Ans.(c)

Sol. Let initially milk and water in container B is $3 x$ liter and x liter respectively
Now,
$3 x+\frac{8}{9} \times 18-x-\frac{1}{9} \times 18=30$
$3 x+16-x-2=30$
$\mathrm{x}=8$
Initial quantity is container $B=8(3+1)=32$ Liter

S7. Ans. (c)

Sol. Total runs scored by team $B=30 \times 4.5+20 \times 5.5-10=235$
\therefore Required answer $=\frac{235}{50}=4.7$

S8. Ans. (b)

Sol. Total balls $=40$
Red balls = 18
Let green balls are x
Then, $\frac{18}{40} \times \frac{x}{39}=\frac{3}{26}$
$\Rightarrow x=10$
\therefore No. of blue balls $=40-28=12$

S9. Ans. (e)

Sol. Ratio of efficiency of A to B is 3 : 2
Let, In 8 days they complete $=(3+2) \times 8=40$ units
So, total work $=40 \times \frac{12}{5}$ units
Time taken by B alone to complete whole work $=\frac{40 \times 12}{5 \times 2}=48$ days

S10. Ans.(d)

Sol. Total employee working in A in year $2000=64 \times \frac{100}{32}=200$
Total employee working in A at the end of 2002 $=(200-20+102-32+78-24)=304$
Total employee working in B at the end of 2002 $=(96-18+72-16)=134$
Required percentage $=\frac{134}{304} \times 100$
$=44.07 \approx 44 \%$

Sol. Let total employee who left B and C in the year 2002 be 7a and 9a respectively
ATQ -
$172+84-36+108-9 a+124-28=406$
$9 \mathrm{a}=424-406$

SSC PRIME 2019

$9 \mathrm{a}=18$
$\mathrm{a}=2$
Employee left B in $2002=14$
So, total employee working in B at the end of 2002
$=160+96-18+72-14=296$

S12. Ans.(a)

Sol. Total employee working in B at the end of $2000=220-28+32=224$
Let total employee left B in 2002 \& 2003 together be $6 x \& 7 x$ respectively
ATQ -
$224+96-18+72-6 x+144-7 x=466$
$13 x=518-466$
$13 \mathrm{x}=52$
So, total 52 employees left B in 2002 \& 2003 together.

S13. Ans.(c)

Sol. Total employee left A in the given three years $=21 \times 3=63$
Total employee left A in 2001 \& 2003 together $=63-24=39$
Total employee left A in 2001 $=39 \times \frac{7}{13}=21$
Total employee working in A at the end of 2002 = 102-21+78-24=135
Required percentage $=\frac{135-108}{108} \times 100$
$=\frac{27}{108} \times 100$
$=25 \%$

S14. Ans.(e)

Sol. Total employee left C in the year $2002=24 \times \frac{4}{3}=32$
Total employee left B in the year $2002=32 \times \frac{5}{8}=20$
Total employee working in A at the end of $2002=102-22+78-24=134$
Total employee working in B at the end of $2002=96-18+72-20=130$
Total employee working in C at the end of $2002=84-36+108-32=124$
Required ratio $=130: 124: 134=65: 62: 67$

S15. Ans.(a)

Sol. Total employee left A in year $2001=36 \times \frac{1}{3}=12$
Total employee left C in year $2002=(36-12) \times \frac{2}{3}=16$
Total employee working in A at the end of $2002=102-12+78-24=144$
Total employee working in C at the end of $2003=84-36+108-16+124-28=236$
Required difference $=236-144=92$

S16. Ans. (a)

Sol. I. $2 x^{2}+11 x+15=0$
$\Rightarrow 2 x^{2}+6 x+5 x+15=0$
$\Rightarrow 2 x(x+3)+5(x+3)=0$
$\Rightarrow(x+3)(2 x+5)=0$
$\Rightarrow x=-3,-5 / 2$
II. $4 y^{2}+13 y+9=0$
$\Rightarrow 4 y^{2}+4 y+9 y+9=0$
$(y+1)(4 y+9)=0$
$\Rightarrow y=-1,-9 / 4$
$y>x$

S17. Ans. (e)

Sol. I. $x^{2}-36 x+324=0$
$\Rightarrow x^{2}-18 x-18 x+324=0$
$\Rightarrow(x-18)^{2}=0$
$\Rightarrow x=18,18$
II. $y^{2}-35 y+216=0$
$\Rightarrow y^{2}-27 y-8 y+216=0$
$\Rightarrow(y-27)(y-8)=0$
$\Rightarrow y=27,8$
No relation

S18. Ans. (c)
Sol. I. $x=(216)^{1 / 3}$
$\Rightarrow x=6$
II. $y^{2}=6$
$\Rightarrow y= \pm \sqrt{6}$
$x>y$

S19. Ans.(a)

Sol. I. $2 \mathrm{x}^{2}+17 \mathrm{x}+35=0$
$2 x^{2}+10 x+7 x+35=0$
$2 x(x+5)+7(x+5)=0$
$(2 x+7)(x+5)=0$
$x=\frac{-7}{2},-5$
II. $3 y^{2}+17 y+24=0$
$3 y^{2}+9 y+8 y+24=0$
$3 y(y+3)+8(y+3)=0$
$(y+3)(3 y+8)=0$

BANK PRIME 2019

$y=-3,-\frac{8}{3}$
$y>x$

S20. Ans.(d)

Sol. I. $x^{2}+72=108$
$x^{2}=108-72=36$
$x= \pm 6$
II. $y^{3}+581=365$
$\mathrm{y}^{3}=-216$
$y=-6$
$x \geq y$

S21. Ans.(b)

Sol. I. $8 \mathrm{x}^{2}+58 \mathrm{x}+39=0$
$8 x^{2}+52 x+6 x+39=0$
$4 x(2 x+13)+3(2 x+13)=0$
$\mathrm{x}=(-13) / 2,(-3) / 4$
II. $8 y^{2}-14 y-15=0$
$8 y^{2}-20 y+6 y-15=0$
$4 y(2 y-5)+3(2 y-5)=0$
$y=5 / 2,(-3) / 4$
$y \geq x$

S22. Ans.(b)

Sol. Total unsubscribed viewers from B $=3000 \times \frac{15}{100}-250=200$
Total unsubscribed viewers from $E=3000 \times \frac{20}{100}-180=420$
Total unsubscribed viewers from $C=3000 \times \frac{28}{100}-440=400$
Required percentage $=\frac{(200+420)-400}{400} \times 100$
$=\frac{220}{400} \times 100=55 \%$

S23. Ans.(b)

Sol. Let total female unsubscribed viewers in D be 3x
So, total male unsubscribed viewers in D will be $5 x$
Total male unsubscribed viewers in $\mathrm{D}=\left(3000 \times \frac{25}{100}-350\right) \times \frac{5 x}{8 x}=250$
Total unsubscribed viewers in A \& C $=\left(3000 \times \frac{12}{100}-220\right)+\left(3000 \times \frac{28}{100}-440\right)$
$=140+400=540$
Required ratio $=\frac{250}{540}=25: 54$

S24. Ans.(e)

Sol. Total unsubscribed viewers from B $=3000 \times \frac{15}{100}-250=200$
Total unsubscribed viewers from $C=3000 \times \frac{28}{100}-440=400$
Total unsubscribed viewers in B \& C and subscribed viewers in E $=200+400+180=780$
Required central angle $=\frac{780}{3000} \times 360=93.6^{\circ}$

S25. Ans.(d)

Sol. Total female viewers in village $C=3000 \times \frac{28}{100} \times \frac{325}{7} \times \frac{1}{100}=390$
Total female unsubscribed viewers in village $C=390 \times \frac{7}{13}=210$
Total male unsubscribed viewers in village $C=\left(3000 \times \frac{28}{100}-440\right)-210=190$

S26. Ans.(b)

Sol. Total subscribed viewers from village $\mathrm{F}=\left(3000 \times \frac{12}{100}-220\right) \times \frac{120}{100}=168$
Total unsubscribed viewers from village $\mathrm{F}=168 \times \frac{4}{3}=224$
Total unsubscribed viewers from C $=3000 \times \frac{28}{100}-440=400$
Required percentage $=\frac{400-224}{400} \times 100$
$=\frac{176}{400} \times 100=44 \%$

S27. Ans.(c)

Sol. Total viewers from all the five village in $2018=3000 \times \frac{140}{100}=4200$
Total subscribed viewers from A in $2018=220 \times 1.25=275$
Total subscribed viewers from B in $2018=250 \times 1.2=300$
Total subscribed viewers from D in $2018=350 \times 1.14=399$
Total subscribed viewers from E in $2018=180 \times 1.1=198$
Total subscribed viewers from C in $2018=1400-(275+300+399+198)=228$
Total unsubscribed viewers from C in $2018=4200 \times \frac{28}{100}-228=948$

S28. Ans.(c)

Sol. Let rate of interest for both scheme be R\%
So,
Amount after 3 years $=8000+\frac{8000 \times 3 R}{100}=8000\left(1+\frac{3 R}{100}\right)=80(100+3 R)$
And
$80(100+3 R)=9000\left(1+\frac{R}{100}\right)^{2}$
(from this R can be calculated)
We don't have to solve complete question
We can see that R can be calculated from
$80(100+3 R)=9000\left(1+\frac{R}{100}\right)^{2}$
Both the statements taken together are necessary to answer the questions

Sol. From A -
One man $=\frac{3}{2}$ women
Total work $=\left(\frac{3}{2} \times 4+18\right) \times 2.5=60$ units
So, 12 women can complete the work $=\frac{60}{12}=5$ days
From B -
$(4 m+18 w) \times 2.5=(6 m+6 w) 4$
$14 \mathrm{~m}=21 \mathrm{w}$
One man $=1.5$ woman

BANK PRIME 2019

Useful For SBI PO | Clerk | IBPS RRB
IBPS PO | Clerk | RBI | BOB \& Others Exams
800+ TOTAL TESTS
Video Solution Available for Selected Mocks
Price @999/-
Validity 9 Months

Total work $=(4 \times 1.5+18) \times 2.5=60$ units
So, 12 women can complete the work $=\frac{60}{12}=5$ days
So, Either statement A or statement B alone is sufficient to give answer of the question.

S30. Ans.(d)
Sol. From A -
Let speed of stream be ' y ' km/hr
$\frac{120}{22.5-y}=4+\frac{120}{22.5+y}$
$\mathrm{y}=7.5 \mathrm{~km} / \mathrm{hr}$
From B -
Let speed of stream be 'a' km/hr
$\frac{150}{22.5+a}+\frac{150}{22.5-a}=15$
$\mathrm{y}=7.5 \mathrm{~km} / \mathrm{hr}$
So. Either statement A or statement B alone is sufficient to give answer of the question.

S31. Ans.(e)

Sol. Form A -

Given, $\mathrm{X} \& \mathrm{Y}$ both are integer and both are multiple of 24 and X is 50% more than Y
So, $X \& Y$ can be $(72,48),(216,144)$ and so on \qquad
So, data A alone not sufficient to give answer of the question

From B -

Given, $\cdot \frac{X}{30} \& \frac{Y}{40}$ both are natural number
But, we can not calculate the value of $\mathrm{X} \& \mathrm{Y}$
From A \& B -
$X \& Y$ can be $(720,480),(2160,1440)$ and so on
So, Statements \mathbf{A} and \mathbf{B} taken together are not sufficient to answer the question

S32. Ans.(a)

Sol. Let students who take art and science be 4 b \& b respectively
Total students who take commerce $=(2 a+16)-(4 b+b)=(2 a+16-5 b)$
From A -
$4 b-(2 a+16-5 b)=8$
$-2 a+9 b=24$
Also, $\frac{b}{(2 a+16)}=\frac{1}{8}$
$-2 \mathrm{a}+8 b=16$
b $=8$
Total students in class $=64$
From B -
$(2 a+16-5 b) \times \frac{75}{100}=4 b$
$6 a+48-15 b=16 b$
$31 b=6 a+48$
$\mathrm{b}=\frac{6 a+48}{31}$
So, from statement I only.

S33. Ans.(b)

Sol. Total boys take admission in college B \& D together $=\left(10.5 \times \frac{64}{100}+18 \times \frac{68}{100}\right) \times 1000$ $=6720+12240=18960$
Total boys take admission in $E=16 \times \frac{60}{100} \times 1000=9600$
Required percentage $=\frac{18960-9600}{9600} \times 100$
$=\frac{9360}{9600} \times 100=97.5 \%$

S34. Ans.(a)

Sol. Total girls appeared in exam from A $=12000 \times \frac{44}{100} \times \frac{75}{100}=3960$
Total girls appeared in exam from C $=9000 \times \frac{48}{100} \times \frac{80}{100}=3456$
Total boys appeared in exam from A \& C together $=17910-(3960+3456)=10494$
Total boys appeared in exam from C $=10494-6048=4446$
Total boys who did not appear in exam from $A=12000 \times \frac{56}{100}-6048=672$
Total boys did not appear in exam from $C=9000 \times \frac{52}{100}-4446=234$
Required difference $=672-234=438$

S35. Ans.(d)

Sol. Total boys taken admission in college A \& B $=12000 \times \frac{56}{100}+10500 \times \frac{64}{100}$ $=6720+6720=13440$
Total girls taken admission in D \& E together $=18000 \times \frac{32}{100}+16000 \times \frac{40}{100}$
$=5760+6400=12160$
Required ratio $=13440: 12160=21: 19$

S36. Ans.(c)

Sol. Total girls taken admission in F $=9000 \times \frac{48}{100} \times \frac{13}{8}=7020$
Total boys taken admission in college $\mathrm{F}=20580-16000 \times \frac{60}{100}$
= $20580-9600=10980$
Required percentage $=\frac{7020}{(7020+10980)} \times 100$
$=\frac{7020}{18000} \times 100=39 \%$

S37. Ans.(c)

Sol. Students taken admission in science stream from B $=10500 \times \frac{2}{7}=3000$
Students taken admission in commerce stream from B $=10500 \times \frac{1}{7}=1500$
Students taken admission in art stream from B $=10500 \times \frac{4}{7}=6000$
Total boys taken admission in art stream from college B
$=6000-10500 \times \frac{36}{100} \times \frac{35}{100}=4677$
Total boys taken admission in science stream from college B
$=3000-10500 \times \frac{36}{100} \times \frac{40}{100}=1488$
Required difference $=4677-1488=3189$

S38. Ans.(a)

Sol. Total boys taken admission in college A $=12000 \times \frac{56}{100}=6720$
Total boys taken admission in college $B=10500 \times \frac{64}{100}=6720$
Total boys taken admission in college $C=9000 \times \frac{52}{100}=4680$
Total boys taken admission in college $D=18000 \times \frac{68}{100}=12240$
Total boys taken admission in college $\mathrm{E}=16000 \times \frac{60}{100}=9600$
Required ratio $=\frac{6720+6720+4680+12240+9600}{5}=\frac{39960}{5}=7992$

S39. Ans.(d)

Sol. Volume of the cylindrical ditch $=\pi r^{2} h$
$=\frac{22}{7} \times 7 \times 7 \times 2$
$=308 \mathrm{~m}^{2}$

S40. Ans.(a)

Sol. Let man invested Rs. A
And, after two years amount invested $=\left(\mathrm{A}+\frac{A}{2}\right)=\frac{3 A}{2} R s$.
Equivalent CI of two year at 10% p.a. $=10+10+\frac{10 \times 10}{2}=21 \%$
ATQ -
$\mathrm{A} \times \frac{21}{100}+\left(\mathrm{A}+\frac{21 A}{100}+\frac{A}{2}\right) \times \frac{10}{100}=457.2$
$0.210 \mathrm{~A}+0.171 \mathrm{~A}=457.2$
$0.381 \mathrm{~A}=457.2$
$\mathrm{A}=1200$ Rs.
Required amount $=1200+1200 \times \frac{15 \times 3}{100}=1740$ Rs.

S41. Ans.(d)

Sol. Investment ratio of A, B \& C $=(4000 \times 6+3000 \times 9):(5500 \times 6+4000 \times 9): 4 x \times 9$
= 51000: 69000: 36x
= 8500: 11500: 6x
ATQ -
$\frac{6 x}{(20000+6 x)} \times 12250=2250$
$\mathrm{x}=750$
investment of $\mathrm{C}=$ Rs 3000

S42. Ans.(c)

Sol. Let length of train A be ' L ' m and speed be ' V ' m / s
ATQ -
$\mathrm{V}=\frac{L}{8}-$
And, V $=\frac{L+180}{17}$
From (i) \& (ii)
$\frac{L}{8}=\frac{L+180}{17}$
$17 \mathrm{~L}-8 L=1440$
$\mathrm{L}=160 \mathrm{~m}$
And $V=20 \mathrm{~m} / \mathrm{s}$
Let length of train B be ' S '
So, $\frac{108}{18} \times 5+20=\frac{160+S}{8}$
$\mathrm{S}=400-160$
$\mathrm{S}=240 \mathrm{~m}$
Let time taken by train B to cross platform P be t sec
So, $\frac{108}{18} \times 5=\frac{240+180}{t}$
$t=\frac{420}{30}=14 \mathrm{sec}$

S43. Ans.(a)

Sol. Let the selling price for each of the shopkeeper be Rs 100x
For $1^{\text {st }}$ shopkeeper
SP=Rs 100x

BANK PRIME 2019

$\mathrm{CP}=100 x \times \frac{75}{100}=R s 75 x$
For $2^{\text {nd }}$ shopkeeper
SP=Rs 100x
$\mathrm{CP}=100 x \times \frac{100}{125}=R s 80 x$
ATQ,
$\Rightarrow 25 x-20 x=$ Rs. 175
$\Rightarrow x=35$
Sum of cost price= Rs 5425

S44. Ans.(b)

Sol. Let the present age of Ayush be x yr.
Present age of his son $=\frac{x-6}{4} \mathrm{yr}$
Present age of his daughter $=\left(\frac{x-6}{4}+7\right) y r$
Present age of his wife $=(x+10)-\left\{\left(\frac{x-6}{4}+7\right)\right\}=\frac{3 x+18}{4} y r$
ATQ
$x+\frac{x-6}{4}+\left(\frac{x-6}{4}+7\right)+\frac{3 x+18}{4}=121$
$x=50 y r$

S45. Ans.(d)

Sol. Let cost price of each bread packet $=$ a Rs.
So, marked price of each bread packet $=2.5$ a
And selling price of each bread packet $=2.5 \mathrm{a} \times \frac{60}{100}=1.5 \mathrm{a}$
Given, 1.5a- $a=30$
$\mathrm{a}=60 \mathrm{Rs}$.
New selling price $=2.5 \mathrm{a} \times \frac{5}{8}=1.5625 a$
Selling price of one bread packet $=1.5625 \times 60=93.75$
Required profit on selling 80 bread packets $=(93.75-60) \times 80=2700$ Rs.

Solutions (46-50):

Given, Commission received by the distributor $=7000$ Rs.
So, the number of bottles sold by distributor $=\frac{7000}{1000} \times 50=350$
Total number of bottles received by him in the whole stock to sell $=350+40=390$
Production cost of each bottle $=\frac{780000}{390}=2000$ Rs.
Marked price of each bottle $=2000 \times 1.3=2600$ Rs.

Total selling price of 350 bottles $=350 \times 2000+140000=840000$ Rs.
Selling price of each bottles $=\frac{840000}{350}=2400$ Rs.
Discount allow by employee (y) $=\frac{2600-2400}{2600} \times 100$
$=\frac{200}{2600} \times 100=7 \frac{9}{13} \%$

S46. Ans.(b)
Sol. $\mathrm{Y}=7 \frac{9}{13} \%$

S47. Ans.(d)

Sol. Required ratio
$=\frac{\frac{100}{13}}{390}=\frac{100}{13 \times 390}=10: 507$

S48. Ans.(a)

Sol. New selling price of one bottle $=2600 \times \frac{90}{100}=2340$
Required profit $\%=\frac{2340-2000}{2000} \times 100=17 \%$

S49. Ans.(b)

Sol. Total stock which another distributor sold $=(350+450)=800$
Total commission received by another distributor $=\frac{800}{50} \times 1000=16000$ Rs.
New cost price of one bottle $=2000+\frac{16000}{800}=2020$ Rs.

S50. Ans.(a)

Sol. Selling price $=2600 \times \frac{95}{100} \times \frac{7}{8}=2161.25$ Rs.
Required profit $=2161.25-2000=161.25$ Rs .
test series

BANK | SSC

Price @1799/-
Validity 12 Months

