

BOOKS

Visit: publications.adda247.com & store.adda247.com For any information, mail us at **publications@adda247.com**

Solutions

S1. Ans.(a)

Sol. Efficiency ratio of A and B = 2:1

QUANTITY 1: Time taken by B = $\frac{3}{1} \times \frac{15}{2} = \frac{45}{2}$ days

QUANTITY 2: Efficiency of C = $2 \times \frac{3}{2} = 3$

∴ Time taken by $C = \frac{45}{2} \times \frac{1}{3} = \frac{15}{2}$ days

QUANTITY 1 > QUANTITY 2

S2. Ans.(c)

Sol. Quantity 1: Let roots are a_1, a_2 then $a_1a_2 = \frac{-5}{2}$

$$\Rightarrow a_2 = \frac{-5}{2} \ (\because a_1 = 1)$$

Quantity 2: 2.5

∴ Quantity 2 > Quantity 1

S3. Ans.(a)

Sol. Quantity 1:

Favorable cases

$$=(1,4),(2,3),(3,2),(4,1),(5,5),(4,6),(6,4)$$

= 7

∴ Required prob. =
$$\frac{7}{36}$$

Quantity 2: $\frac{1}{6}$

Quantity 1 > Quantity 2

adda 241

S4. Ans.(a)

Sol. D + h = 28 m.

Quantity 1:7x = 28

x = 4

r = 8 m

h = 12 m

Curved surface area of cylinder = $2\pi \times 8 \times 12$

 $= 2\pi \times 96 \text{ m}^2$

Quantity 2:

h = 10m

Radius = $\frac{28-10}{2}$

= 9 m

Curved surface area of cylinder = $2\pi \times 9 \times 10$

 $=2\pi \times 90 \text{ m}^2$

Quantity 1 > Quantity 2

1650 + TOTAL TESTS

Price @1799/-

Validity 12 Months

S5. Ans.(e)

Sol. There will be two numbers 73 and 37 whose product of digits is 21

So if we take 73 then

Quantity 1 > Quantity 2

And if we take 37 then,

Quantity 2 > Quantity 1

So no relation can be established.

S6. Ans.(c)

Sol. Let initially milk and water in container B is 3x liter and x liter respectively

Now

$$3x + \frac{8}{9} \times 18 - x - \frac{1}{9} \times 18 = 30$$

$$3x + 16 - x - 2 = 30$$

$$x = 8$$

Initial quantity is container B = 8(3 + 1) = 32 Liter

S7. Ans.(c)

Sol. Total runs scored by team $B = 30 \times 4.5 + 20 \times 5.5 - 10 = 235$

∴ Required answer =
$$\frac{235}{50}$$
 = 4.7

S8. Ans. (b)

Sol. Total balls = 40

Red balls = 18

Let green balls are x

Then,
$$\frac{18}{40} \times \frac{x}{39} = \frac{3}{26}$$

$$\Rightarrow x = 10$$

 \therefore No. of blue balls = 40 - 28 = 12

S9. Ans. (e)

Sol. Ratio of efficiency of A to B is 3 : 2

Let, In 8 days they complete = $(3 + 2) \times 8 = 40$ units

So, total work = $40 \times \frac{12}{5}$ units

Time taken by B alone to complete whole work = $\frac{40 \times 12}{5 \times 2}$ = 48 days

S10. Ans.(d)

Sol. Total employee working in A in year $2000 = 64 \times \frac{100}{32} = 200$

Total employee working in A at the end of 2002 = (200 - 20 + 102 - 32 + 78 - 24) = 304

adda 247

Total employee working in B at the end of 2002 = (96 - 18 + 72 - 16) = 134

Required percentage = $\frac{134}{304} \times 100$

 $= 44.07 \approx 44\%$

S11. Ans.(b)

Sol. Let total employee who left B and C in the year 2002 be 7a and 9a respectively

ATQ -

$$172 + 84 - 36 + 108 - 9a + 124 - 28 = 406$$

$$9a = 424 - 406$$

$$9a = 18$$

$$a = 2$$

Employee left B in 2002 = 14

So, total employee working in B at the end of 2002

$$= 160 + 96 - 18 + 72 - 14 = 296$$

S12. Ans.(a)

Sol. Total employee working in B at the end of 2000 = 220 - 28 + 32 = 224

Let total employee left B in 2002 & 2003 together be 6x & 7x respectively

ATQ -

$$224 + 96 - 18 + 72 - 6x + 144 - 7x = 466$$

$$13x = 518 - 466$$

$$13x = 52$$

So, total 52 employees left B in 2002 & 2003 together.

S13. Ans.(c)

Sol. Total employee left A in the given three years = $21 \times 3 = 63$

Total employee left A in 2001 & 2003 together = 63 - 24 = 39

Total employee left A in 2001 = $39 \times \frac{7}{13} = 21$

Total employee working in A at the end of 2002 = 102 - 21 + 78 - 24 = 135

Required percentage = $\frac{135-108}{108} \times 100$

$$=\frac{27}{108}\times 100$$

S14. Ans.(e)

Sol. Total employee left C in the year $2002 = 24 \times \frac{4}{3} = 32$

Total employee left B in the year 2002 = $32 \times \frac{5}{8} = 20$

Total employee working in A at the end of 2002 = 102 - 22 + 78 - 24 = 134

Total employee working in B at the end of 2002 = 96 - 18 + 72 - 20 = 130

Total employee working in C at the end of 2002 = 84 - 36 + 108 - 32 = 124

Required ratio = 130 : 124 : 134 = 65 : 62 : 67

S15. Ans.(a)

Sol. Total employee left A in year 2001 = $36 \times \frac{1}{3} = 12$

Total employee left C in year 2002 = $(36-12) \times \frac{2}{3} = 16$

Total employee working in A at the end of 2002 = 102 - 12 + 78 - 24 = 144

Total employee working in C at the end of 2003 = 84 - 36 + 108 - 16 + 124 - 28 = 236

Required difference = 236 - 144 = 92

S16. Ans. (a)

Sol. I.
$$2x^2 + 11x + 15 = 0$$

$$\Rightarrow 2x^2 + 6x + 5x + 15 = 0$$

$$\Rightarrow 2x(x+3) + 5(x+3) = 0$$

$$\Rightarrow (x+3)(2x+5) = 0$$

$$\Rightarrow x = -3, -5/2$$

II.
$$4y^2 + 13y + 9 = 0$$

$$\Rightarrow 4y^2 + 4y + 9y + 9 = 0$$

$$(y+1)(4y+9)=0$$

$$\Rightarrow y = -1, -9/4$$

S17. Ans. (e)

Sol. I.
$$x^2 - 36x + 324 = 0$$

$$\Rightarrow x^2 - 18x - 18x + 324 = 0$$

$$\Rightarrow (x - 18)^2 = 0$$

$$\Rightarrow x = 18, 18$$

II.
$$y^2 - 35y + 216 = 0$$

$$\Rightarrow y^2 - 27y - 8y + 216 = 0$$

$$\Rightarrow (y - 27)(y - 8) = 0$$

$$\Rightarrow v = 27.8$$

No relation

S18. Ans. (c)

Sol. I.
$$x = (216)^{1/3}$$

$$\Rightarrow x = 6$$

II.
$$y^2 = 6$$

$$\Rightarrow y = \pm \sqrt{6}$$

x > y

\$19. Ans.(a)

Sol. I.
$$2x^2 + 17x + 35 = 0$$

$$2x^2 + 10x + 7x + 35 = 0$$

$$2x(x+5)+7(x+5)=0$$

$$(2x+7)(x+5)=0$$

$$x = \frac{-7}{2}, -5$$

II.
$$3y^2 + 17y + 24 = 0$$

 $3y^2 + 9y + 8y + 24 = 0$
 $3y (y + 3) + 8 (y + 3) = 0$
 $(y + 3) (3y + 8) = 0$
 $y = -3, -\frac{8}{3}$
 $y > x$

S20. Ans.(d)

Sol. I.
$$x^2 + 72 = 108$$

 $x^2 = 108 - 72 = 36$
 $x = \pm 6$
II. $y^3 + 581 = 365$
 $y^3 = -216$
 $y = -6$
 $x \ge y$

S21. Ans.(b)

Sol. I.
$$8x^2 + 58x + 39 = 0$$

 $8x^2 + 52x + 6x + 39 = 0$
 $4x (2x + 13) + 3 (2x + 13) = 0$
 $x = (-13)/2, (-3)/4$
II. $8y^2 - 14y - 15 = 0$
 $8y^2 - 20y + 6y - 15 = 0$
 $4y (2y - 5) + 3(2y - 5) = 0$
 $y = 5/2, (-3)/4$
 $y \ge x$

S22. Ans.(b)

Sol. Total unsubscribed viewers from B =
$$3000 \times \frac{15}{100} - 250 = 200$$

Total unsubscribed viewers from E = $3000 \times \frac{20}{100} - 180 = 420$
Total unsubscribed viewers from C = $3000 \times \frac{28}{100} - 440 = 400$
Required percentage = $\frac{(200+420)-400}{400} \times 100$
= $\frac{220}{400} \times 100 = 55\%$

S23. Ans.(b)

Sol. Let total female unsubscribed viewers in D be 3x So, total male unsubscribed viewers in D will be 5x Total male unsubscribed viewers in D = $(3000 \times \frac{25}{100} - 350) \times \frac{5x}{8x} = 250$ Total unsubscribed viewers in A & C = $(3000 \times \frac{12}{100} - 220) + (3000 \times \frac{28}{100} - 440)$ = 140 + 400 = 540 Required ratio = $\frac{250}{540} = 25 : 54$

adda 247

BANK PRIME 2019

Useful For SBI PO | Clerk | IBPS RRB IBPS PO | Clerk | RBI | BOB & Others Exams

800+ TOTAL TESTS

Video Solution Available for Selected Mocks

Price @1199/-

Validity 15 Months

S24. Ans.(e)

Sol. Total unsubscribed viewers from B = $3000 \times \frac{15}{100} - 250 = 200$

Total unsubscribed viewers from C = $3000 \times \frac{28}{100} - 440 = 400$

Total unsubscribed viewers in B & C and subscribed viewers in E = 200 + 400 + 180 = 780

Required central angle = $\frac{780}{3000} \times 360 = 93.6^{\circ}$

S25. Ans.(d)

Sol. Total female viewers in village $C = 3000 \times \frac{28}{100} \times \frac{325}{7} \times \frac{1}{100} = 390$

Total female unsubscribed viewers in village C = $390 \times \frac{7}{13} = 210$

Total male unsubscribed viewers in village C = $(3000 \times \frac{28}{100} - 440) - 210 = 190$

S26. Ans.(b)

Sol. Total subscribed viewers from village F = $(3000 \times \frac{12}{100} - 220) \times \frac{120}{100} = 168$

Total unsubscribed viewers from village F = $168 \times \frac{4}{3}$ = 224

Total unsubscribed viewers from C = $3000 \times \frac{28}{100} - 440 = 400$

Required percentage = $\frac{400-224}{400} \times 100$

$$=\frac{176}{400}\times100=44\%$$

S27. Ans.(c)

Sol. Total viewers from all the five village in $2018 = 3000 \times \frac{140}{100} = 4200$

Total subscribed viewers from A in 2018 = $220 \times 1.25 = 275$

Total subscribed viewers from B in $2018 = 250 \times 1.2 = 300$

Total subscribed viewers from D in 2018 = $350 \times 1.14 = 399$

Total subscribed viewers from E in 2018 = $180 \times 1.1 = 198$

Total subscribed viewers from C in 2018 = 1400 - (275 + 300 + 399 + 198) = 228

Total unsubscribed viewers from C in 2018 = $4200 \times \frac{28}{100} - 228 = 948$

S28. Ans.(c)

Sol. Let rate of interest for both scheme be R%

So

And

Amount after 3 years =8000+ $\frac{8000 \times 3R}{100}$ = 8000 (1 + $\frac{3R}{100}$) = 80 (100 + 3R)

 $80 (100+3R) = 9000 (1 + \frac{R}{100})^2$

(from this R can be calculated)

We don't have to solve complete question

We can see that R can be calculated from

 $80 (100+3R) = 9000 \left(1 + \frac{R}{100}\right)^2$

Both the statements taken together are necessary to answer the questions

S29. Ans.(d)

Sol. From A -

One man = $\frac{3}{2}$ women

Total work = $\left(\frac{3}{2} \times 4 + 18\right) \times 2.5 = 60 \text{ units}$

So, 12 women can complete the work = $\frac{60}{12}$ = 5 days

From B-

$$(4m + 18w) \times 2.5 = (6m + 6w)4$$

14m = 21w

One man = 1.5 woman

Total work = $(4 \times 1.5 + 18) \times 2.5 = 60$ *units*

So, 12 women can complete the work = $\frac{60}{12}$ = 5 days

So, Either statement A or statement B alone is sufficient to give answer of the question.

S30. Ans.(d)

Sol. From A -

Let speed of stream be 'y' km/hr

$$\frac{120}{22.5 - y} = 4 + \frac{120}{22.5 + y}$$

y = 7.5 km/hr

From B -

Let speed of stream be 'a' km/hr

$$\frac{150}{22.5+a} + \frac{150}{22.5-a} = 15$$

y = 7.5 km/hr

So. Either statement A or statement B alone is sufficient to give answer of the question.

S31. Ans.(e)

Sol. Form A -

Given, X & Y both are integer and both are multiple of 24 and X is 50% more than Y

So, X & Y can be (72, 48), (216, 144) and so on

So, data A alone not sufficient to give answer of the question

From B -

Given, $\frac{X}{30}$ & $\frac{Y}{40}$ both are natural number

But, we can not calculate the value of X & Y

From A & B -

X & Y can be (720, 480), (2160, 1440) and so on ------

 ${\bf So}$, Statements ${\bf A}$ and ${\bf B}$ taken together are not sufficient to answer the question

S32. Ans.(a)

Sol. Let students who take art and science be 4b & b respectively

Total students who take commerce = (2a + 16) - (4b + b) = (2a + 16 - 5b)

From A -

$$4b - (2a + 16 - 5b) = 8$$

$$-2a + 9b = 24$$
 ----- (i)

Also,
$$\frac{b}{(2a+16)} = \frac{1}{8}$$

$$-2a + 8b = 16$$
 ----- (ii)

$$b = 8$$

Total students in class = 64

From B-

$$(2a + 16 - 5b) \times \frac{75}{100} = 4b$$
 -----(i)

$$6a + 48 - 15b = 16b$$

$$31b = 6a + 48$$

$$b = \frac{6a + 48}{31}$$

So, from statement I only.

S33. Ans.(b)

Sol. Total boys take admission in college B & D together= $(10.5 \times \frac{64}{100} + 18 \times \frac{68}{100}) \times 1000$

$$=6720 + 12240 = 18960$$

Total boys take admission in E = $16 \times \frac{60}{100} \times 1000 = 9600$

Required percentage =
$$\frac{18960-9600}{9600} \times 100$$

$$=\frac{9360}{9600}\times100=97.5\%$$

adda 241

S34. Ans.(a)

Sol. Total girls appeared in exam from A = $12000 \times \frac{44}{100} \times \frac{75}{100} = 3960$

Total girls appeared in exam from C = $9000 \times \frac{48}{100} \times \frac{80}{100} = 3456$

Total boys appeared in exam from A & C together = 17910 - (3960 + 3456) = 10494

Total boys appeared in exam from C = 10494 - 6048 = 4446

Total boys who did not appear in exam from A = $12000 \times \frac{56}{100} - 6048 = 672$

Total boys did not appear in exam from C = $9000 \times \frac{52}{100} - 4446 = 234$

Required difference = 672 - 234 = 438

S35. Ans.(d)

Sol. Total boys taken admission in college A & B = $12000 \times \frac{56}{100} + 10500 \times \frac{64}{100}$

$$= 6720 + 6720 = 13440$$

Total girls taken admission in D & E together = $18000 \times \frac{32}{100} + 16000 \times \frac{40}{100}$

Required ratio = 13440 : 12160 = 21 : 19

S36. Ans.(c)

Sol. Total girls taken admission in F = $9000 \times \frac{48}{100} \times \frac{13}{8} = 7020$

Total boys taken admission in college F = $20580 - 16000 \times \frac{60}{100}$

$$= 20580 - 9600 = 10980$$

Required percentage = $\frac{7020}{(7020+10980)} \times 100$

$$=\frac{7020}{18000}\times100=39\%$$

\$37. Ans.(c)

Sol. Students taken admission in science stream from B = $10500 \times \frac{2}{7} = 3000$

Students taken admission in commerce stream from B = $10500 \times \frac{1}{7} = 1500$

Students taken admission in art stream from B = $10500 \times \frac{4}{7} = 6000$

Total boys taken admission in art stream from college B

$$=6000 - 10500 \times \frac{36}{100} \times \frac{35}{100} = 4677$$

Total boys taken admission in science stream from college B

$$=3000 - 10500 \times \frac{36}{100} \times \frac{40}{100} = 1488$$

Required difference = 4677 - 1488 = 3189

S38. Ans.(a)

Sol. Total boys taken admission in college A = $\frac{56}{100}$ = 6720

Total boys taken admission in college B = $10500 \times \frac{64}{100} = 6720$ Total boys taken admission in college C = $9000 \times \frac{52}{100} = 4680$

Total boys taken admission in college D = $18000 \times \frac{68}{100} = 12240$

Total boys taken admission in college E = $16000 \times \frac{60}{100} = 9600$

Required ratio = $\frac{6720 + 6720 + 4680 + 12240 + 9600}{5} = \frac{39960}{5} = 7992$

\$39. Ans.(d)

Sol. Volume of the cylindrical ditch = $\pi r^2 h$

$$=\frac{22}{7}\times7\times7\times2$$

$$= 308 \text{ m}^2$$

Area of remaining field = $(X - \pi r^2)$ m²

$$= (X - 154) m^2$$

$$(X - 154) \times 0.77 = 308$$

$$(X - 154) = 400$$

$$X = 554 \text{ m}^2$$

INSURANCE PRIME 2019

Useful For LIC AAO | NIACL AO | UIIC AO OICL AO | GIC & Others Exams

100+ TOTAL TESTS

Price @499/-

Validity 12 Months

S40. Ans.(a)

Sol. Let man invested Rs. A

And, after two years amount invested = $(A + \frac{A}{2}) = \frac{3A}{2} Rs$.

Equivalent CI of two year at 10% p.a. = $10 + 10 + \frac{10 \times 10}{2} = 21\%$

ATQ -

$$A \times \frac{21}{100} + (A + \frac{21A}{100} + \frac{A}{2}) \times \frac{10}{100} = 457.2$$

$$0.210A + 0.171A = 457.2$$

$$0.381A = 457.2$$

$$A = 1200 \text{ Rs}.$$

Required amount = $1200 + 1200 \times \frac{15 \times 3}{100} = 1740 \text{ Rs.}$

S41. Ans.(d)

Sol. Investment ratio of A, B & C = $(4000 \times 6 + 3000 \times 9)$: $(5500 \times 6 + 4000 \times 9)$: $4x \times 9$

$$= 8500 : 11500 : 6x$$

$$\frac{6x}{(20000+6x)} \times 12250 = 2250$$

$$x = 750$$

investment of C= Rs 3000

S42. Ans.(c)

Sol. Let length of train A be 'L' m and speed be 'V' m/s

$$V = \frac{L}{8}$$
 ----- (i)

And,
$$V = \frac{L+180}{17}$$
 ---- (ii)

From (i) & (ii)

$$\frac{L}{8} = \frac{L+180}{17}$$

$$17L - 8L = 1440$$

$$L = 160 \text{ m}$$

And
$$V = 20 \text{ m/s}$$

Let length of train B be 'S'

So,
$$\frac{108}{18} \times 5 + 20 = \frac{160 + S}{8}$$

$$S = 400 - 160$$

$$S = 240 \text{ m}$$

Let time taken by train B to cross platform P be t sec

So,
$$\frac{108}{18} \times 5 = \frac{240 + 180}{t}$$

$$t = \frac{420}{30} = 14 \ sec$$

S43. Ans.(a)

Sol. Let the selling price for each of the shopkeeper be Rs 100x

For 1st shopkeeper

SP = Rs 100x

$$CP = 100x \times \frac{75}{100} = Rs \ 75x$$

For 2nd shopkeeper

SP = Rs 100x

$$CP = 100x \times \frac{100}{125} = Rs\ 80x$$

ATQ,

$$\Rightarrow 25x - 20x = Rs. 175$$

$$\Rightarrow x = 35$$

Sum of cost price= Rs 5425

adda 247

S44. Ans.(b)

Sol. Let the present age of Ayush be x yr.

Present age of his son = $\frac{x-6}{4}$ yr

Present age of his daughter= $\left(\frac{x-6}{4} + 7\right) yr$

Present age of his wife= $(x + 10) - \left\{ \left(\frac{x-6}{4} + 7 \right) \right\} = \frac{3x+18}{4}yr$

ATQ

$$x + \frac{x-6}{4} + \left(\frac{x-6}{4} + 7\right) + \frac{3x+18}{4} = 121$$
$$x = 50 \ yr$$

\$45. Ans.(d)

Sol. Let cost price of each bread packet = a Rs.

So, marked price of each bread packet = 2.5a

And selling price of each bread packet = $2.5a \times \frac{60}{100} = 1.5a$

Given, 1.5a - a = 30

a = 60 Rs.

New selling price = $2.5a \times \frac{5}{8} = 1.5625a$

Selling price of one bread packet = $1.5625 \times 60 = 93.75$

Required profit on selling 80 bread packets = $(93.75 - 60) \times 80 = 2700$ Rs.

Solutions (46-50):

Given, Commission received by the distributor = 7000 Rs.

So, the number of bottles sold by distributor = $\frac{7000}{1000} \times 50 = 350$

Total number of bottles received by him in the whole stock to sell = 350 + 40 = 390

Production cost of each bottle = $\frac{780000}{390}$ = 2000 Rs.

Marked price of each bottle = $2000 \times 1.3 = 2600 Rs$.

adda 241

Total selling price of 350 bottles = $350 \times 2000 + 140000 = 840000$ Rs.

Selling price of each bottles = $\frac{840000}{350}$ = 2400 Rs.

Discount allow by employee (y) = $\frac{2600-2400}{2600} \times 100$

$$=\frac{200}{2600}\times100=7\frac{9}{13}\%$$

S46. Ans.(b)

Sol.
$$Y = 7 \frac{9}{13} \%$$

S47. Ans.(d)

Sol. Required ratio

$$=\frac{\frac{100}{13}}{390}=\frac{100}{13\times390}=10:507$$

S48. Ans.(a)

Sol. New selling price of one bottle = $2600 \times \frac{90}{100} = 2340$

Required profit $\% = \frac{2340 - 2000}{2000} \times 100 = 17\%$

S49. Ans.(b)

Sol. Total stock which another distributor sold = (350 + 450) = 800

Total commission received by another distributor = $\frac{800}{50} \times 1000 = 16000$ Rs.

New cost price of one bottle = $2000 + \frac{16000}{800} = 2020 \text{ Rs.}$

\$50. Ans.(a)

Sol. Selling price = $2600 \times \frac{95}{100} \times \frac{7}{8} = 2161.25 \text{ Rs.}$

Required profit = 2161.25 - 2000 = 161.25 Rs.

COMBO PRIME 2019

BANK | SSC

1650 + TOTAL TESTS

Price @1799/-

Validity 12 Months